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Construction of Appearance Manifold with Embedded
View-Dependent Covariance Matrix for 3D Object Recognition
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SUMMARY We propose the construction of an appearance manifold
with embedded view-dependent covariance matrix to recognize 3D objects
which are influenced by geometric distortions and quality degradation ef-
fects. The appearance manifold is used to capture the pose variability, while
the covariance matrix is used to learn the distribution of samples for gain-
ing noise-invariance. However, since the appearance of an object in the
captured image is different for every different pose, the covariance matrix
value is also different for every pose position. Therefore, it is important
to embed view-dependent covariance matrices in the manifold of an ob-
ject. We propose two models of constructing an appearance manifold with
view-dependent covariance matrix, called the View-dependent Covariance
matrix by training-Point Interpolation (VCPI) and View-dependent Covari-
ance matrix by Eigenvector Interpolation (VCEI) methods. Here, the em-
bedded view-dependent covariance matrix of the VCPI method is obtained
by interpolating every training-points from one pose to other training-
points in a consecutive pose. Meanwhile, in the VCEI method, the em-
bedded view-dependent covariance matrix is obtained by interpolating only
the eigenvectors and eigenvalues without considering the correspondences
of each training image. As it embeds the covariance matrix in manifold, our
view-dependent covariance matrix methods are robust to any pose changes
and are also noise invariant. Our main goal is to construct a robust and
efficient manifold with embedded view-dependent covariance matrix for
recognizing objects from images which are influenced with various degra-
dation effects.
key words: 3D object recognition, appearance manifold, view-dependent
covariance matrix, eigenvector interpolation, eigenvalue interpolation,
eigenspace

1. Introduction

The appearance-based framework has provided a conve-
nient base for investigating issues in object recognition for
decades. Combined with eigenspace concept using Princi-
pal Component Analysis (PCA), it has been widely used in
many recognition tasks, such as in object recognition and
face recognition. Some of the earlier works in this domain
include the application of characterizing the human face us-
ing PCA method in eigenpictures by Kirby and Sirovich [1],
[2] and eigenfaces by Turk and Pentland [3]. Later, Wiskott
et al. [4] pointed out a major disadvantage of PCA, that it
could not capture even the simplest invariance unless this in-
formation is explicitly provided in the training data. While
in a non-controlled environment, some variances of pose, il-
lumination, occlusion, shifting, rotation, and so on, might
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occur and change the appearance of objects in captured im-
ages. Therefore, earlier methods in the eigenspace domain
tend to fail when there are significant variations.

Addressing these variations problems, researchers im-
proved the previous eigenpoint model with the use of an
appearance manifold in the eigenspace. For years, vari-
ous types of appearance manifolds have been developed,
such as the simple appearance manifold in [5]–[7] which
could handle pose and illumination variations, the appear-
ance manifold with probabilistic techniques in [8]–[12] for
handling various facial changes, the layer-transparent man-
ifold in [13] for recognizing occluded objects, and other
types of appearance manifolds which address different prob-
lems.

First, we focus on the work of Murase and Nayar,
called the Parametric Eigenspace method [7], due to its sim-
plicity and applicability to the general pose variation prob-
lems. However, although it can deal with pose and illumina-
tion changes, this model only works well with the assump-
tion that there are no degradation effects. Unfortunately,
this assumption is not realistic in real-world applications. In
an image capturing process or segmentation process, some
degradation effects usually occur and influence the original
image. When some significant variations exist, the position
of a non-degraded image and the image which is influenced
with some degradation effects might be placed far from each
other in the eigenspace. Thus, making the learning process
rely on a simple manifold to capture image variations is not
sufficient.

To overcome these limitations, we propose a novel
method to construct the appearance manifold with embed-
ded view-dependent covariance matrix. Here, covariance
matrix is used to learn the samples distribution of each pose
for gaining noise-invariance. However, since the appearance
of an object in the captured image will be different for ev-
ery different pose, the covariance matrix value will also be
changed. Thus, our idea is, in order to accurately capture
the distribution information, it is important to embed a view-
dependent covariance matrix in the appearance manifold.

In our view-dependent covariance matrix methods, the
mean vectors and covariance matrices are analyzed and have
different values for each training pose. Further, to cover
the untrained poses, we construct the appearance manifold
by interpolating every training-points from one pose to the
training-points in a consecutive pose in the VCPI method.
Meanwhile, in the VCEI method, the view-dependent co-
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variance matrix for the untrained poses were obtained by in-
terpolating the eigenvectors and eigenvalues. Here, it is not
necessary to critically control the correspondences between
every training image of each pose to a consecutive pose.
Thus, besides its noise-invariant characteristic, the construc-
tion model with our View-dependent Covariance matrix by
Eigenvector Interpolation (VCEI) method is also computa-
tionally efficient.

The remainder of this paper is organized as follows:
we describe the feature extraction process using eigenspace
representation in Sect. 2. Section 3 covers the idea and con-
struction types of an appearance manifold with embedded
covariance matrix, and also the sufficient classification tech-
nique. Section 4 presents the experimental setup, results,
and performance analysis in various degradation conditions
and various training-pose intervals. Section 5 covers the dis-
cussion of our view-dependent covariance matrix methods.
Finally, Sect. 6 presents our conclusions.

2. Eigenspace Representation

Appearance-based approaches use sets of training images in
various poses. These images are usually represented in a
very high dimensional space, thus, processing them directly
in the image space are computationally expensive. Here,
PCA provides a technique to efficiently represent a collec-
tion of images by reducing their dimensionality.

Generally, the captured images should be normalized
in brightness and scaled in order to be invariant to image
magnification and illumination intensity. These normalized
images can be written as a vector x by reading the number
of pixels (N) in an image:

x = [x1, x2, . . . , xN]T (1)

Let M be the number of the images in a training set. By
subtracting the average image c of all images, the learning
set Y will be obtained.

Fig. 1 Scheme of an appearance manifold with embedded covariance matrix.

Y = [x1 − c, x2 − c, . . . , xM − c] (2)

Next, the auto-correlation matrix is defined by

Q = YYT (3)

and the eigenvalues λi with its corresponding eigenvectors
ei are determined by solving the following eigenvector de-
composition problem:

λiei = Qei (4)

In order to obtain the dimension reduction, simply ig-
nore small eigenvalues and use only k corresponding eigen-
vectors with a threshold value T :

k∑
i=1

λi

/ N∑
i=1

λi ≤ T (5)

where k � N.
The first k eigenvectors will be used to project S train-

ing samples of P objects with H poses. s sample image of
object p with horizontal viewpoint θh, x(p)

s (θh), are projected
onto the eigenspace:

g(p)
s (θh) = [e1, e2, · · · , ek]T (x(p)

s (θh) − c) (6)

By projecting all the training samples onto the
eigenspace, training features are represented efficiently as
a set of discrete points in a low dimensional space.

3. Appearance Manifold with Embedded Covariance
Matrix in Eigenspace

As we have stated earlier, our idea to overcome the problem
of recognizing objects from images which are influenced
with degradation effects is by taking into account the cor-
relation of the data sets for gaining noise invariant in the
appearance manifold.

Figure 1 shows the scheme of construction process of
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an appearance manifold with embedded covariance matrix.
In order to construct the appearance manifold with embed-
ded covariance matrix, first, we train the system with im-
ages for each training pose. Note that for each pose, only
a single camera-captured image is necessary. The other im-
ages could be obtained by generating artificial images from
the original camera-captured image. Next, all the training
samples are projected onto the feature space (eigenspace).
Then, the mean vector and the covariance matrix are calcu-
lated to represent the center position of samples and sample-
distribution for every training pose. Finally, to cover the
unlearned poses, the appearance manifold is constructed by
interpolating the mean vectors and covariance matrices. As
it embeds the covariance matrix in the appearance manifold,
the appearance manifold takes into account the correlations
of the data set. Thus, it will be noise invariant.

In this section, we present various ways to construct
the appearance manifold with embedded covariance matrix.
We describe the idea of each construction type, explain the
construction process for each method, and present the clas-
sification technique for the recognition step.

3.1 Various Types of Appearance Manifolds with Embed-
ded Covariance Matrix

Here, we present the general idea for each construction type
of an appearance manifold with embedded covariance ma-
trix as shown in Fig. 2.

Simple Manifold (SM): Figure 2 (a) shows the con-
struction type of an appearance manifold using the Simple
Manifold (SM) method. This method constructs the mani-
fold based on interpolation of mean vectors of samples, and
applies identity matrix as the covariance matrix for each
pose. Therefore, this manifold model relies only on the
mean vectors, without considering the information of sam-
ple distributions. In case of using only one image sample
in each pose, this method will be the same as Murase and
Nayar’s Parametric Eigenspace method (see [5]–[7]).

Constant Covariance matrix (CC): The construction
model of Constant Covariance matrix (CC) method is de-
picted in Fig. 2 (b). Here, the appearance manifold is con-
structed by interpolating mean vectors and applying the
same (average) value to all covariance matrices of every
pose. Thus, this model has a constant value of covariance
matrix for every pose in the manifold.

View-dependent Covariance matrix by training-
Point Interpolation (VCPI): Figure 2 (c) shows the ap-
pearance manifold with training-Point Interpolation (VCPI)
method. In the VCPI method, the appearance manifold is
obtained by interpolating every training-points in each pose
class to the training-points in a consecutive pose class that
has the same characteristics, such as same degradation ef-
fects. Next, the new eigenpoints for every untrained pose
class could be generated and their mean vectors and covari-
ance matrices could be calculated. Here, the appearance

(a) Simple Manifold (SM)

(b) Constant Covariance matrix (CC)

(c) View-dependent Covariance matrix by training-Point
Interpolation (VCPI)

(d) View-dependent Covariance matrix by Eigenvector
Interpolation (VCEI)

Fig. 2 Construction types of an appearance manifold with embedded
covariance matrix.

manifold will have different values of mean vector and co-
variance matrix for each pose.

View-dependent Covariance matrix by Eigenvector
Interpolation (VCEI): Figure 2 (d) shows the construction
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model of View-dependent Covariance matrix by the Eigen-
vector Interpolation (VCEI) method. Here, in order to cap-
ture the density model of each pose more accurately, we
propose a manifold model which has different values of
mean vector and covariance matrix for each pose. Further,
we propose a manifold construction method by eigenvectors
and eigenvalues interpolation. Besides its accurateness, this
model provides a practicable way of efficiently constructing
the appearance manifold without critically controlling the
correspondence of every training-samples in each pose to a
consecutive pose.

3.2 Simple Manifold (SM) Method

In the Simple Manifold (SM) method, after projecting
all training images onto the eigenspace, the mean vector
μ(p)(θh) and the covariance matrix Σ(p)(θh) for each object
p for horizontal viewpoint θh are calculated. The mean vec-
tor is typically estimated by:

μ(p)(θh) =
1
S

S∑
s=1

g(p)
s (θh) (7)

where S is the number of training samples from each class
and g(p)

s (θh) is the image sample s from viewpoint θh and
object p in the eigenspace.

To construct the appearance manifold, any interpola-
tion method to the mean vector of two-consecutive poses
may be applied and the value of identity matrix for its co-
variance matrix is given by:

Σ(p)(θh) = I (8)

3.3 Constant Covariance Matrix (CC) Method

In the Constant Covariance matrix (CC) method, the mean
vector is calculated as in Eq. (7) and then an interpolation
method is applied to obtain mean vectors for the untrained
poses. While for the covariance matrix, covariance ma-
trix for every trained pose is calculated and then its average
value is applied to every covariance matrix in every pose in
the manifold. The covariance matrix is typically estimated
by:

Σ(p)(θh) =
1
S

S∑
s=1

(g(p)
s (θh) − μ(p)(θh))

(g(p)
s (θh) − μ(p)(θh))T (9)

and the average value of covariance matrix for all poses is
calculated through:

Σ̄(p) =
1
H

H∑
h=1

Σ(p)(θh) (10)

Thus, by applying the average value of covariance matrix to
every pose in the manifold, we will obtain:

Σ(p)(θh) = Σ̄(p) (11)

3.4 View-Dependent Covariance Matrix by Training-Point
Interpolation (VCPI) Method

In the View-dependent Covariance matrix by training-Point
Interpolation (VCPI) method, an interpolation technique is
applied to every pair of training-points of two consecutive
pose classes which has the same characteristic. The equa-
tion for linearly interpolating two training-points from two
consecutive training-poses g(p)(θh) and g(p)(θh+1) is given
by:

g(p)(θh + η) = (1 − η)g(p)(θh) + (η)g(p)(θh+1) (12)

where η is the fractional part which indicates how far the
pose value changes from the original θh value.

After the interpolation process, the mean vectors and
covariance matrices could be calculated using Eqs. (7) and
(9), respectively. In this VCPI method, the appearance man-
ifold will have different values of mean vector and covari-
ance matrix for each pose.

3.5 View-Dependent Covariance Matrix by Eigenvector
Interpolation (VCEI) Method

Here, we present the steps to construct the appearance mani-
fold with embedded view-dependent covariance matrix. The
View-dependent Covariance matrix by Eigenvector Interpo-
lation (VCEI) method consists of two stages: the interpo-
lation of mean vector and the interpolation of eigenvectors
and eigenvalues. The mean vector represents the center of
samples in each learning pose, while the eigenvectors and
eigenvalues represent the covariance matrix as distribution
of samples in each pose.

To cover the information of untrained poses, the in-
terpolation processes for the mean vectors can be done by
simply selecting one of several existing algorithms. Mean-
while, the interpolation of eigenvectors and eigenvalues are
done based on the high-dimensional rotation theory. Here,
the eigenvectors and eigenvalues can be considered as axes
directions and lengths of a hyper-ellipsoid in an eigenspace.
Thus, we consider to obtain the covariance matrices of un-
trained poses by rotating hyper-ellipsoids from every two-
consecutive trained poses. Buja et al. in [14] also developed
a similar mathematical base of high-dimensional rotation for
interactive data visualization.

Here, we define three steps to interpolate the eigenvec-
tors and eigenvalues:

[Step1] Correspond axes directions The process of
checking axes directions between two eigenvectors
from two-consecutive poses is necessary, since these
axes directions will be used to define the rotation an-
gle of hyper-ellipsoids. Let E0 and E1 be matrices
formed by aligning each pair of eigenvectors e0 j and
e1 j ( j = 1, 2, · · · , k) of covariance matrices Σ0 and Σ1.
The same process on eigenvalues should be done also
by aligning eigenvalues λ0 j and λ1 j ( j = 1, 2, · · · , k) to
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form k-dimensional vectors λ0 and λ1. To obtain the
correspondences of axes, sort the eigenvectors of E0

and E1 based on their eigenvalues λ0 and λ1 to form
E′0 and E′1, respectively. Next, perform the same task
for the eigenvalues to form λ′0 and λ′1 from λ0 and
λ1. Then, check the angle between the corresponded
axes and invert the eigenvector e′1 j ( j = 1, 2, · · · , k) if
e′0 j

T e′1 j < 0 so that the angle between corresponded
axes is less than or equal to π/2. For covariance ma-
trix Σx, the eigenvalues λx j ( j = 1, 2, · · · , k) is simply
calculated by

λx j =

(
(1 − x)

√
λ′0 j + x

√
λ′1 j

)2
(13)

while, its eigenvectors Ex is calculated using a k × k
rotation matrix by

Ex = R(xφ)E′0 (14)

R represents an interpolated rotation when 0 ≤ x ≤
1. Here, φ = [φ1, · · · , φm] where φ is the parameter
vector from m numbers of rotation angles to define the
rotation matrix R.

[Step2] Determine the rotation matrix As the elements
of E′0 and E′1 are orthogonal, thus, a rotation matrix
could be defined by

R(φ) = E′1E′0T (15)

Refering to the Special Orthogonal (SO) rule, R(φ) can
be diagonalized with a k × k unitary matrix U and a
diagonal matrix D including complex elements as

R(φ) = UD(φ)U† (16)

where U† represents a complex conjugate transpose
matrix of U. Furthermore, the result of the diagonaliza-
tion process is a k-dimensional diagonal matrix D(φ)
which always has m pairs of complex conjugate roots
eiφ. Since each pair of complex conjugate root has a
rotation angle, in order to check how many rotation
angles we have in k-dimensional D(φ), we calculate
m = �k/2�. If k is an even number (k = 2m), then
D(φ) = diag(eiφ1 , e−iφ1 , · · · , eiφm , e−iφm). However, if k
is an odd number (k = 2m + 1), then the first diagonal
element of the complex conjugate roots is always 1.
Thus, D(φ) = diag(1, eiφ1 , e−iφ1 , · · · , eiφm , e−iφm ), where
eiφ = cosφ + i sin φ.

[Step3] Interpolate eigenvectors and eigenvalues Final-
ly, R(xθ) can be obtained simply by applying linear in-
terpolation on the vectors. Next, Σx is calculated by

Σx = ExΛxEx
T (17)

where Λx represents a diagonal matrix with λx j ( j =
1, 2, · · · , n) as the diagonal elements.

3.6 Classification in Eigenspace

The Mahalanobis metric provides a sufficient way to classify
images in terms of considering their related characteristics
and likelihood in each pose class. Based on the correlations
between variables, it becomes a useful way of determining
similarity of an unknown sample to known sets.

In order to recognize an input image u, it is first pro-
jected onto the eigenspace

z = [e1, e2, . . . , ek]T (u − c) (18)

Then, the distance d(p)(z) between the projected-image
in the eigenspace z and the manifold of an object p is calcu-
lated as follows:

d(p)(z) = (z − μ(p)(θ))TΣ(p)(θ)−1(z − μ(p)(θ)) (19)

Finally, the input image u will be recognized as object
p which has the minimum d(p)(z).

4. Experiments and Analysis

We implemented the view-dependent covariance matrix
methods for an object recognition application. To evaluate
the performance of our methods, we developed 3D object
recognition systems in various conditions. The first condi-
tion was to recognize objects from non-degraded images,
while other conditions were recognizing objects from im-
ages influenced with various degradation effects. In the ex-
periments, the degradation types were motion blur, transla-
tion, and rotation effects. The system performance was also
examined for various training-pose interval. The verification
of the modelling result is given at the end of Sect. 5.

4.1 Experimental Setup

We design a series of experiments to evaluate the perfor-
mance of the proposed methods. First, images of objects
were captured using CCD camera, taken at pose intervals of
one degree along the horizontal axis. This corresponds to
360 images per object. The images were then cropped and
rescaled to 32×32 pixels of grayscale image with a uniform
black background. Here, two datasets of objects were used
in the experiments. Dataset 1 contains seven objects with
block shapes, while Dataset 2 consists of ten objects with
toy figures. The samples of objects used in the experiments
are shown in Fig. 3.

Further, there are three pose-interval sets used in the
experiments. In the first set, the system was trained with
a total of 6,552 images. Each object consists of 36 poses
with 10 degree intervals of horizontal positions (0◦, 10◦,
20◦, · · ·, 350◦), and each pose consists of 26 training images
with an original camera-captured image and 25 generated
images with various degradation effects. The generated im-
ages were obtained by composing artificial noises, such as
left and right translations (3, 6, 9, 12, and 15 pixels), clock-
wise and counter-clockwise rotations (5◦, 10◦, 15◦, 20◦, and
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Fig. 3 Samples of objects used in the experiments.

Fig. 4 Samples of training images of objects.

25◦), and motion blur (5%, 10%, 15%, 20%, 25%). These
artificial noises were generated using MATLAB functions.
As the second set, for 30 degree training-pose intervals (0◦,
30◦, 60◦, · · ·, 330◦), each object has 12 training poses and
2,184 images were used as training images. For the third
set, the 60 degree training-pose interval (0◦, 60◦, 120◦, · · ·,
300◦), there were 6 poses trained for each object. Thus, the
total number of training images in this dataset was 1,092
images.

The samples of training images of an object in each
dataset are shown in Fig. 4. The camera-captured images
are shown in Fig. 4 (a). While Fig. 4 (b) shows the images
with blur effects, Fig. 4 (c) shows the images which are in-
fluenced with translation (shift) effects, and Fig. 4 (d) are im-
ages with rotation effects.

Next, features were extracted using PCA and were pro-
jected onto the eigenspace. The appearance manifolds were
then created based on each construction method. The inter-
polation method was uniformed by using the linear interpo-
lation method for interpolating mean vectors, while the co-
variance matrices were obtained according to the construc-
tion methods explained in Sect. 3.

Here, we evaluated two methods for constructing the
appearance manifold based on the Simple Manifold (SM)
model: the Simple Manifold with Non-Degraded center
(SMND) and Simple Manifold with Mean center (SMM)

methods. In the SMND method, the center of the samples
distribution is based on the non-degraded (original camera-
captured) image. Meanwhile, in the SMM method, the cen-
ter of the sample distribution is based on the mean vector of
image samples in each pose. For both the SMND and SMM
methods, an identity matrix was applied to all the covari-
ance matrices in the manifold. For the Constant Covariance
matrix (CC) method, the mean vector of image samples be-
come the center of the samples distribution for each pose
and the average value of all covariance matrices was applied
to every covariance matrices along the manifold. For the
View-dependent Covariance matrix by training-Point Inter-
polation (VCPI) and the View-dependent Covariance ma-
trix by Eigenvector Interpolation (VCEI) methods, the cen-
ter of the samples distribution is the mean vector of image
samples of each pose. Each pose in the appearance man-
ifold also has a different covariance matrix. However, in
the VCPI method, the covariance matrices for the untrained
poses were obtained by interpolating each training-point of
each pose to a consecutive training-pose. Meanwhile, in the
VCEI method, the covariance matrices of untrained poses
were obtained by interpolating only the eigenvectors and
eigenvalues of two consecutive training-poses, as explained
in Sect. 3.5.

Finally, we tested the system with input images which
were different from the learning images in horizontal poses
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(5◦, 15◦, 25◦, · · ·, 355◦). We also conducted experiments
to observe the degradation in performance of the proposed
approaches when the images were influenced with various
types of degradation effects. For classification, we applied
the Mahalanobis distance measurement.

We compared the performance of the proposed view-
dependent covariance matrix methods (the VCPI and VCEI
methods) with that of the Simple Manifold with Non-
Degraded center (SMND) method, the Simple Manifold
with Mean center (SMM) method, and the Constant Covari-
ance matrix (CC) method. The performances were evalu-
ated on non-degraded input-image condition, various degra-
dation conditions, and various training-pose interval.

4.2 Overall Performance in Various Degradation Condi-
tions

Table 1 presents the average recognition accuracies for the
SMND, SMM, CC, VCPI, and VCEI methods for two
datasets in two ranges of degradation conditions. The ranges
of the degradation conditions are (0-10)% and (0-25)%.

The (0-10)% range means that the testing images were
influenced with various degradation effects (translation, ro-
tation, blur) within the range of 0% up to 10% of image
size. Meanwhile, the second range, (0-25)% range means
that the testing images were influenced with translation, ro-
tation, and blur effects within the range of 0% up to 25%
of image size. Thus, the testing images in the second range
were influenced with 0 pixel (no translation) up to 9 pixels
of translation effects, 0◦ (no rotation) up to 25◦ of rotation
effects, and 0% (no blur) up to 25% of blur effects.

For recognizing objects in Dataset 1 which consists of
various block shapes, for (0-10)% range, both the VCPI and
VCEI methods achieved higher recognition rates compared
with that of the CC method, and the simple manifold meth-
ods (the SMND and SMM methods). The VCPI method
achieved 90.04% and the VCEI method achieved 89.20%,
while the CC, SMND, and SMM methods only achieved
76.41%, 73.68%, and 73.54%, respectively. Next, in the

Table 1 Results for recognizing objects of two datasets from images with various ranges of degrada-
tion effects.

Methods
Dataset 1 Dataset 2 Dataset 1 Dataset 2
(0-10)% (0-25)% (0-10)% (0-25)%

Simple Manifold with Non-Degraded center (SMND) 73.68 58.70 55.25 41.50
Simple Manifold with Mean center (SMM) 73.54 69.35 56.78 53.50
Constant Covariance matrix (CC) 76.41 77.22 60.91 64.32
View-dependent Covariance matrix by training-Point Interpolation (VCPI) 90.04 98.93 82.23 98.92
View-dependent Covariance matrix by Eigenvector Interpolation (VCEI) 89.20 98.77 79.28 98.62

Table 2 Results for recognizing objects in Dataset 1 from images with non-degraded effects.

Methods
10◦ pose- 30◦ pose- 60◦ pose-
interval interval interval

Simple Manifold with Non-Degraded center (SMND) 99.60 94.05 81.75
Simple Manifold with Mean center (SMM) 76.19 67.86 66.67
Constant Covariance matrix (CC) 79.37 75.40 77.38
View-dependent Covariance matrix by training-Point Interpolation (VCPI) 94.05 88.89 82.54
View-dependent Covariance matrix by Eigenvector Interpolation (VCEI) 92.06 85.71 82.54

(0-25)% range case, where the degradation effects became
more severe, the recognition accuracies of all methods de-
creased along with the increment level of the degradation
effects. However, both the VCPI and VCEI methods could
maintain their superiority.

In the next experiment, for recognizing toy figure ob-
jects in Dataset 2 with (0-10)% range, the VCPI and VCEI
methods also achieved higher recognition rates compared
with that of the CC, SMND, and SMM methods. The VCPI
method achieved 98.93% and the VCEI method achieved
98.77%. Meanwhile, the CC, SMND, and SMM methods
only achieved 77.22%, 58.70%, and 69.35%, respectively.
The VCPI and VCEI methods also successfully performed
their robustness upon the increment level of the degradation
effects. It is shown in the next (0-25)% range case, where the
VCPI method still achieved 98.92% and the VCEI method
achieved 98.62% of recognition accuracy.

In overall, as shown in Table 1, the proposed view-
dependent covariance matrix methods (the VCPI and VCEI
methods) could outperform the CC method and simple man-
ifold methods (the SMND and SMM methods) in recogniz-
ing different types of objects in various degradation condi-
tions for both datasets. In the next sections, we take the case
of Dataset 1 in order to present more detailed analysis on the
recognition results of the appearance manifold methods.

4.3 Performance in Non-degraded Input-Image Condition

Table 2 shows a comparison of recognition accuracies of
the simple manifold methods (the SMND and SMM meth-
ods), Constant Covariance matrix (CC), and view-dependent
covariance matrix methods (the VCPI and VCEI meth-
ods) when recognizing objects in Dataset 1 from images
with non-degraded effects. These results show that for all
training-pose intervals, shown in Table 2, the SMND, VCPI,
and VCEI methods gave better performances compared with
the other two methods in a non-degraded input-image con-
dition. In this experiment, since the input images were not
influenced with the degradation effects, the input images are
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likely to be similar to the original camera-captured images.
Thus, the SMND method which use the non-degraded im-
age as the center of sample distribution could achieve good
performance in recognizing objects from non-degraded im-
ages, especially in 10◦ and 30◦ training-pose interval. How-
ever, when a wider training-pose interval is used (60◦), the
proposed view-dependent covariance matrix methods (the
VCPI and VCEI methods) could outperform the SMND
method.

4.4 Performance in Various Degradation Conditions

To evaluate the performance of the proposed view-
dependent covariance matrix methods in various degrada-
tion conditions, we conducted several experiments. As
shown in Fig. 5, the appearance manifold methods were ap-
plied to recognize images in Dataset 1 which are influenced
with motion blur effects, translation effects, and rotation ef-
fects. For motion blur effects, the VCPI and VCEI methods
always give higher recognition accuracies compared with
that of the CC and SMM methods. Although the SMND
method showed the highest recognition accuracies for 5%
and 10% blur effects, when we increased the level of the
blur effects to 15%, 20% and 25%, the proposed VCPI and
VCEI methods could outperform the SMND method. Next,
for recognizing objects with various left and right transla-
tion effects, the proposed VCPI and VCEI methods always
give higher recognition accuracies than the SMND, SMM,
and CC methods. Finally, the same trend also appeared in
recognizing objects with various rotation effects, where the
proposed VCPI and VCEI methods could outperform the
SMND, SMM, and CC methods.

Figure 5 indicates that the proposed VCPI and VCEI
methods always achieve higher recognition accuracies com-

Fig. 5 Results for recognizing objects in Dataset 1 from images with various degradation effects.

Fig. 6 Recognition results of Dataset 1 of View-dependent Covariance matrix by the Eigenvector
Interpolation (VCEI) method in various training-pose intervals and degradation conditions.

pared with the SMND, SMM, and CC methods for various
degradation conditions. It also shows the robustness of the
VCPI and VCEI methods to various degradation conditions,
especially for motion blur effects and rotation effects.

4.5 Performance in Various Training-Pose Intervals

We also conducted experiments to observe the degrada-
tion performance of the proposed view-dependent covari-
ance matrix methods in various training-pose intervals and
influenced with various degradation effects. The system was
trained with 10◦, 30◦, and 60◦ intervals of horizontal posi-
tions with the same conditions as explained in the experi-
mental setup in Sect. 4.1.

Figure 6 shows the recognition accuracies of the pro-
posed VCEI method in various training-pose intervals with
various motion blur, translations, and rotation effects. For
the motion blur case, the decrement value of recognition
accuracies from 10◦ training-pose interval to 30◦ training-
pose interval was 5.32% in average. While higher decre-
ment value of recognition accuracies of 7.06% occurred
when the training-pose interval was changed from 30◦ to
60◦. In the case of translation effects, the decrement value
of recognition accuracies from 10◦ training-pose interval to
30◦ training-pose interval was 5.52% in average and 4.80%
for changing the training-pose interval from 30◦ to 60◦. Fi-
nally, for rotation effects, the decrement value of recogni-
tion accuracies from 10◦ to 30◦ training-pose interval and
from 30◦ to 60◦ training-pose interval were relatively small;
4.56% and 2.74%, respectively. In overall, the recogni-
tion accuracy of the proposed VCEI method only decreased
5.13% when 30◦ wider training-pose interval was used.
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Fig. 7 Samples of cases where the Simple Manifold with Mean center (SMM) method failed but
View-dependent Covariance matrix by Eigenvector Interpolation (VCEI) method succeed.

(a) Ground truth (b) SMND and SMM (c) CC (d) VCPI (e) VCEI

Fig. 8 Verification results of various methods.

5. Discussion

From the experimental results, we have proved that the idea
to embed view-dependent covariance matrix in an appear-
ance manifold worked well to overcome the problem of
recognizing objects from images which are influenced with
degradation effects. Here, we have presented novel manifold
construction models, called the View-dependent Covariance
matrix by training-Point Interpolation (VCPI) and View-
dependent Covariance matrix by Eigenvector Interpolation
(VCEI) methods. The VCEI method constructs the manifold
by using only the eigenvectors and eigenvalues without pre-
serving the information on how to build the correspondence
of every training image in each pose. This method outper-
formed the efficiency of the VCPI method which needs to
interpolate each training image in every trained-pose to its
consecutive poses.

We also observed that the SMND method only worked
well in recognizing objects from non-degraded images (as
shown in Table 2). Meanwhile, the SMM method gave good
recognition results only for objects having distinct appear-
ance and major differences in shape characteristics. How-
ever, the proposed view-dependent covariance matrix meth-
ods could recognize objects with a similar appearance. Fig-
ure 7 shows the set of objects for which the SMM method
failed but the VCEI method succeeded. Using the SMM
method, the object in Fig. 7 (a) was recognized as the object
in Fig. 7 (b), since it had similar color appearance. Another
failed case in the SMM method, but succeed in the VCEI
method is that the object in Fig. 7 (c) was recognized as the
object in Fig. 7 (d) due to the similar size. Also, the ob-
ject in Fig. 7 (e) was recognized incorrectly as the object in
Fig. 7 (f) since it had a similar shape. These results show
that the proposed VCEI method, which considers sample
distribution information captured in the view-dependent co-
variance matrix, has a high capability in recognizing similar
objects both in non-degraded condition and when influenced
with degradation effects.

Finally, verification results are shown in Fig. 8, which
shows the construction of covariance matrix along with its
first and second eigenvectors directions. Here, in order to
simplify the visualization, we draw the covariance matrix
construction in 2D figures. The covariance matrix construc-
tions in Fig. 8 were obtained by slicing the appearance man-
ifold of each method on an untrained 45◦ viewpoint, where
each appearance manifold was constructed from 0◦ and 90◦
viewpoints. We intentionally set this condition in order to
emphasize the difficulty in modelling of interpolation results
from two extremely different learning viewpoints.

Figure 8 (a) shows the ground truth of a covariance
matrix construction, obtained from real image projections,
while Figs. 8 (b), (c), (d), and (e) show the construction re-
sults of covariance matrix from the SM, CC, VCPI, and
VCEI methods, respectively. Figure 8 (d) of the proposed
VCPI method presents the most similar construction result
of the covariance matrix with the result of real image projec-
tions depicted in Fig. 8 (a). The VCEI method then followed
in the second most similar construction result of the co-
variance matrix with Fig. 8 (e). Meanwhile, the CC method
with its construction result depicted in Fig. 8 (c) and the SM
method in Fig. 8 (b) were less similar in shape and direc-
tion from the ground truth in Fig. 8 (a). These results con-
firm their weak recognition capability compared with the
proposed view-dependent covariance matrix methods (the
VCPI and VCEI methods).

6. Conclusion

We have presented novel methods for constructing an ap-
pearance manifold with embedded view-dependent covari-
ance matrix. First, the View-dependent Covariance matrix
by training-Point Interpolation (VCPI) method constructs
the appearance manifold by interpolating every training-
point from one pose class to the training-points in a consecu-
tive pose class. Meanwhile, the View-dependent Covariance
matrix by Eigenvector Interpolation (VCEI) method is based
on the eigenvalues and eigenvectors interpolations to form
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a view-dependent covariance matrix model. The proposed
view-dependent covariance matrix methods have been im-
plemented in a 3D object recognition system to recognize
3D objects from images that are influenced by geometric
distortions such as translation and rotation, and quality-
degradation (motion blur) effects. Experimental results
proved that the VCPI and VCEI methods are superior to
the other manifold construction types, such as the Constant
Covariance matrix (CC) and simple manifold (the SMND
and SMM) methods. Their performances also seemed to be
consistent even when some degradation factors exist, such
as images influenced with different types of degradation ef-
fects and when lesser numbers of training images were used.
Here, the advantage of the VCEI method is that, since it ob-
tains the view-dependent covariance matrix by interpolating
only the eigenvectors and eigenvalues, it is computationally
more efficient compared with the VCPI method which has to
correspond every training-image in each pose to their con-
secutive poses. Our future work will concentrate on recog-
nizing objects under more severe conditions, such as more
complex poses and more similar shapes.
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