e R U IEERLY o VIR TLOY]

, Mey 1994
Q‘"J\:@?Q

Learning, Positioning, and Tracking Visual Appearance

Shree K. Nayar, Hiroshi Murase, and Sameer A. Nene *

Department of Computer Science

Columbia University
New York, N.Y. 10027

Abstract

The problem of vision-based robot positioning and tracking
is addressed. A general learning algorithm is presented for
determining the mapping between robot position and object
appearance. The robot is first moved through several displace-
ments with respect to its desired position, and a large set of
object images is acquired. This image set is compressed us-
ing principal component analysis to obtain a low-dimensional
subspace. Variations in object images due to robot displace-
ments are represented as a compact parametrized manifold in
the subspace. While positioning or tracking, errors in end-
effector coordinates are efficiently computed from a single
brightness tmage using the parametric manifold representa-
tion. The learning component enables accurate visual control
without any prior hand-eye calibration. Several experiments
have been conducted to demonstrate the practical feassbility of
the proposed positioning/tracking approach and its relevance
to industrial applications.

Introduction

For a robot to be able to interact in a precise and intelligent
manner with its environment, it must rely on sensory feed-
back. Vision serves as a powerful component of such a feed-
back system. It provides a richness of information that can
enable a manipulator to handle uncertainties inherent to a
task, react to a varying environment, and gracefully recover
from failures. A problem of substantial interest and rele-
vance to robotics is visual positioning/tracking; the ability
of a robot to either automatically position itself at a desired
location with respect to an object, or accurately follow an
object as it moves along an unknown trajectory.

This paper presents a new approach to visual posi-
tioning and tracking. Before we proceed to describe our
approach, a brief review of previous work is in order.
Previous tracking methods can be broadly classified into
two categories; (a) feature/model based and (b) learning
based. The first category uses image features to esti-
mate the robot’s displacement with respect to the object.
The goal is to find the rotation and translation that must
be applied to the end-effector to bring the features back
to their desired positions in the image. Image features
used vary from geometric primitives such as edges, lines,
vertices, and circles [Weiss et al. 87] [Feddema et al. 91],
(Koivo and Houshangi 91] [Hashimoto et al. 91] to optical

_ "This research was conducted at the Center for Research
in Intelligent Systems, Department of Computer Science,
Columbia University. It was supported in part by the David
and Lucile Packard Fellowship and in part by ARPA Con-
tract No. DACA 76-92-C-0007. Hiroshi Murase is with the
NTT Basic Research Lab., Tokyo, Japan.

flow estimates [Papanikolopoulos et al. 91] [Luo et al. 88]
and object location estimates obtained using stereo
[Allen et al. 92]. The control schemes used to drive the
robot to its desired position vary from simple prediction al-
gorithms employed to achieve computational efficiency, to
more sophisticated adaptive self-tuning controllers that ac-
count for the dynamics of the manipulator. Many of the
above methods require prior calibration of the vision sen-
sor’s intrinsic parameters (e.g. focal length) as well as its
extrinsic parameters (rotation and translation with respect
to the manipulator).

The second category of positioning/tracking methods in-
cludes a learning component. In the learning stage, the map-
ping between image feature locations and robot coordinates
is generated prior (off-line) to positioning/tracking. This
mapping is then used to determine, in real-time, errors in
robot position/velocity from image feature coordinates. This
is generally accomplished without any explicit knowledge
of the object’s geometry or the robot’s kinematic parame-
ters. In addition, calibration of the vision sensor is not re-
quired as long as the sensor-robot configuration remains un-
altered between learning and tracking. These methods differ
from each other primarily in the type of learning algorithm
used. The learning strategies vary from neural-like networks
[Kuperstien 87] [Mel 87] [Miller 89] [Walter et al. 90] to ta-
ble lookup mechanisms such as the cerebellar model articu-
lation controller (CMAC) [Albus 75] [Miller 87].

Here, we propose a new framework for learning-based vi-
sual positioning/tracking. Our approach differs from previ-
ous ones in two significant ways; (a) the method uses raw
brightness images directly without the computation of im-
age features, and (b) the learning algorithm introduced is
based on principal component analysis rather than a large
input/output mapping network. During the learning stage,
a sizeable image window is selected that represents the ap-
pearance of the object when the robot is in the desired po-
sition. A large set of object images is then obtained by
incrementally perturbing the robot’s end-effector (hand-eye
system). The image set is compressed using principal compo-
nent analysis [Oja 83] to obtain a low-dimensional subspace,
called eigenspace. Variations in object images due to robot
displacements are represented in the form of a parametrized
manifold in this eigenspace. The advantages of using this
representation are discussed in the paper.

In the positioning or tracking application, each new image
is projected to the eigenspace and the location of the projec-
tion on the parametrized manifold determines the robot dis-
placement (error) with respect to the desired position. Po-
sitioning and tracking are achieved without prior knowledge
of the object’s geometry or reflectance, the robot’s kinematic

3237

1050-4729/94 $03.00 © 1994 IEEE

parameters, and the vision sensor’s parameters. We conclude
with experiments conducted using an Adept robot. The ac-
curacy and efficiency of the proposed method are demon-
strated using three sample applications; (a) the assembly of
electronic devices on a circuit board, (b) the insertion of a
peg in a hole; and (c) the tracking of a manufactured part
moving on a turntable. :

The Approach

Figure 1 shows the hand-eye system we have used to demon-
strate visual positioning and tracking. The manipulator used
is a 5 degree-of-freedom Adept robot that is interfaced with
a Sun IPX workstation. A CCD camera is mounted adjacent
to the robot gripper and provides images of the tracked ob-
Ject. The end-effector’s position (translation and rotation)
can be described in any frame of reference attached to the
robot. Without loss of generality, we denote the end-effector
position by the generalized coordinates:

(1)

where m represents the end-effector degrees of freedom
(DOF) used in the positioning or tracking application. The
imaging optics is selected such that the tracked object oc-
cupies a large section of the image. The image area used
as visual input is a fixed window, within the complete im-
age, which includes sufficient object detail (for example, see
Figure 2) *. This image window is written as a vector i by
reading brightness values from it in a raster scan fashion:

(2)

qa = [q, ¢2,

i = [i1, 12,

. Source e

Figure 1: The hand-eye system used for visual positioning
and tracking. The end-effector includes a gripper, an image
sensor, and a light source.

Our objective is to compute off-line the mapping between
the robot end-effector coordinates and object images. The

! Alternatively, the contents of several windows of fixed
sizes and shapes, scattered in the image, can be concatenated
and treated as a single window.

brightness image i for any given robot position q depends
on the three-dimensional shape of the object, its reflectance
properties, the illumination conditions, and the end-effecto,
coordinates with respect to the object. Shape and reflectance
are intrinsic properties of a rigid object that do not change
during positioning or tracking. In order to overcome the ef.
fects of possible illumination variations, we have used a light
source that is also mounted on the end-effector. In our setup
(see Figure 1), the source is one end of a fiber-optic cable
connected to a strong light source at the other end. Thjs
hand-sourceis the dominant source of object illumination 2
and minimizes the effects of ambient illumination. '

Figure 2: Each image vector i is obtained by reading pixel
brightness values from an image window (black box) of fixed
size and position.

This leaves us with the position and orientation of the
end-effector with respect to the object. Each robot position
q produces an image 1 (Figure 3). It is this relation, or
mapping 1(q), that we wish to learn. To this end, we define
the nominal or desired image i as the one produced when
the robot is in the desired position § with respect to the
object. For convenience, we define all robot positions with
respect to q, l.e. the coordinate system with q = 0. Once
the mapping i(q) has been learned, the robot displacement q
with respect to the desired position can be determined from
any image i by inverse mapping. As we will see shortly, this
inverse mapping is continuous and can be achieved using raw
images without the computation of image features, such as,
edges, lines, corners, circles, or optical flow estimates.

Several advantages result from this approach. (a) The
three-dimensional shape and reflectance properties of the ob-
Jject need not be known or computed. The effects of shape
and reflectance are embedded in the raw brightness images.
(b) Robot displacements are computed using images rather
than image features. This not only saves computations but
also avoids detection and localization errors introduced by
feature extraction algorithms. (c) The extrinsic and intrinsic
parameters of the camera are not used. Therefore, it is.not
necessary to calibrate the camera with respect to the hand
or any other coordinate system; a process that is known to
be cumbersome. All that is required is that the camera be
positioned on the hand such that a descriptive image of the
object is available.

“This illumination method is effective not only for the
approach described in this paper but also for visual servoing
methods that rely on robust computation of image features.
Placing the source close to the sensor also minimizes shadows
in the image.

3238

BRIGHTNESS
IMAGES

ROBOT
DISPLACEMENTS

Figure 3: Estimation of the robot’s displacement from its
desired position is based on the observation that every dis-
placement produces a unique brightness image.

Learning Displacement-Image Mapping

In this section, we present the learning approach used to
determine a direct mapping between the generalized robot
cordinates and object images. Later, we show how this
mapping can be effectively used for positioning and tracking
purposes.

Acquiring Learning Images
All images of the object taken by varying the robot posi-
tion are of the same size, the size of the image widow used
(Figure 2). The window is selected such that it remains on
the object even while robot coordinates are varied during
the learning process. This ensures that the positioning and
tracking stages are insensitive to the background of the ob-
ject, avoiding the use of any segmentation algorithm. It is
reasonable to assume that in a positioning or tracking appli-
cation errors in robot position are relatively small. Hence,
the range of discrete manipulator positions used to obtain
the image set may be confined to a small area around the
desired position §. We denote the image corresponding to
the discrete position qj, as ij.

Prior to learning, the imaging sensor is linearized using
a simple calibration procedure. This ensures that image
brightness is proportional to scene radiance. We would like
our learning process to be unaffected by variations in the in-
tensity of illumination or the aperture of the imaging system.
This can be achieved by normalizing each acquired image,
such that, the total energy contained in the image is unity:
i = i/| i]}. Let the number of discrete samples obtained
for each DOF 1 be R;. Then the total number of images is
M = H;:l R;. The complete image set can be written as:

(3)

The image i corresponding to the desired robot position § =
0 is also included in this set.

Computing Eigenspaces

Images in the above set tend to be correlated to a large
degree since end-effector displacements between consecutive
images are small. Our first step is to take advantage of this
correlation and compress the large set to a low-dimensional
representation that captures the key appearance characteris-
tics of the object. A suitable compression technique is based
on principal component analysis [Oja 83], where the eigen-
vectors of the image set are computed and used as orthog-
onal bases for representing individual images. Though, in
general, all the eigenvectors of an image set are required for

perfect reconstruction of any particular image, only a few
are sufficient for positioning or tracking applications. These
eigenvectors constitute the dimensions of the eigenspace, or
image subspace, in which object appearance is represented
as a function of robot displacement.

First, the average c of all images in the set is subtracted
from each image. This ensures that the eigenvector with
the largest eigenvalue represents the subspace dimension in
which the variance of images is maximum in the correlation
sense. In other words, it is the most important dimension
of the eigenspace. An image matrix is constructed by sub-
tracting ¢ from each image and stacking the resulting vectors
column-wise:

Pé{il—c, ig—c, (4)

P is NxM, where N is the number of pixels in each image
and M is the total number of images in the set. To compute
eigenvectors of the image set we define the covariance matriz:

Q=PP” (5)

Qis N x N, clearly a very large matrix since a large number

...... y iM—c}

of pixels constitute an image. The eigenvectors e and the
corresponding eigenvalues Ax of Q are to be determined by
solving the well-known eigenstructure decomposition prob-

lem:
Qex (6)
The calculation of the eigenvectors of a matrix as large as
Q is computationally intensive. Fast algorithms for solving
this problem have been a topic of active research in the area
of image coding/compression and pattern recognition (see
[Oja 83]). A reasonably efficient algorithm is based on the
conjugate gradient method. The problem is formulated as
one of finding the eigenvalues and eigenvectors that maxi-
mize a scalar function. A function that is often used is the
Raleigh quotient F(e):

Arer =

_ (eTQe)
T (eTe) (7)

The conjugate gradient method is used to find the vector e;
that maximizes F. The corresponding value of the Raleigh
quotient, F'(e1), is the largest eigenvalue A; of the covariance
matrix Q. Once the largest eigenvalue and the correspond-
ing eigenvector are computed in this manner, the matrix Q
is modified to remove its dimension associated with the com-
puted eigenvector. The Raleigh quotient is then used with
the modified covariance matrix to determine the next largest
eigenvalue and its corresponding eigenvector. The iterative
modification of Q can be summarized as:

Q = Q
Qs = Qs—l — Ag-1€51 es—lT (8)

The above procedure can be repeated until a desired number
of eigenvectors are computed. However, since in our case Q
is a very large matrix (N x N), each iteration of the conjugate
gradient algorithm proves expensive.

If the number of images M in the set is much smaller than
the number of pixels N in each image, a substantially more
efficient algorithm may be used. Developed by Murakami
and Kumar [Murakami and Kumar 82], this algorithm uses

the implicit covariance matrix Q, where:

Q =pP"pP

F(e)

()

3239

Note that Q is a M x M matrix and hence much smaller
than Q when the number of images in P is smaller than the
number of pixels in each image. Using the conjugate gradient
algorithm, the M eigenvectors of Q can be computed. These
can be computed much faster than the first M eigenvectors
of Q due to the disparity in the sizes of the two matrices.
Using singular value decomposition (SVD), Murakami and
Kumar [Murakami and Kumar 82] show that the M largest
eigenvalues and corresponding eigenvectors of Q can be de-
termined from the M eigenvalues and eigenvectors of Q as:

A = A

5iPe (10)
Here, Ax and & are the k*" eigenvalue and eigenvector of Q.
Since we are only interested in the first K eigenvectors of Q,
where K < M, the above algorithm can be used. It is not
useful however when more than M eigenvectors are needed.

The above algorithm produces a set of eigenvalues { Ax |
k = 1,2,...,K} where {/\1 Z Az Z 2 AK},
and a corresponding set of orthonormal eigenvectors {ex |
k =1,2,..,K}. Note that each eigenvector is of size N,
i.e. the size of an image. These K eigenvectors consti-
tute our eigenspace; it is an approximation to the complete
eigenspace with N dimensions. In our experiments we have
used eigenspaces of less that 20 dimensions.

ey =

Parametric Eigenspace Representation

We now represent the appearance of the object as a function
of the robot coordinates q. The result is a manifold in the
K-dimensional eigenspace computed above. This represen-
tation is called the parametric eigenspace®.

Each learning sample i; in the image set is projected onto
the eigenspace by first subtracting the average image c from
it and finding the inner product of the result with each of
the eigenvectors (dimensions) of the eigenspace. The result
1s a point f;:

(11)

By projecting all the learning samples in this manner, a set of
discrete points are obtained in eigenspace. Since consecutive
object images are strongly correlated, their projections in
eigenspace are close to one another. Hence, the discrete
points obtained by projecting all the learning samples can
be assumed to lie on a manifold that represents all possible
object appearances for all possible manipulator coordinates.
The discrete points are interpolated to obtain this manifold.
In our implementation, we have used a standard quadratic
B-spline interpolation algorithm [Rogers 90]. The resulting
manifold can be expressed as:

(12)

This manifold is in a low-dimensional space and therefore is
a compact continuous representation of object appearance
as a function of manipulator coordinates q. In practice, the
number of end-effector DOF's used for positioning and track-
ing can vary.

f(q) = f(ql,qg, ,qm)

®The parametric eigenspace representation was intro-
duced in [Murase and Nayar 93] for object recognition and
pose estimation.

The above eigenspace represen}a.tion has an impor,
property. Consider two images i, and i, that belong ltll
the image set used to compute an eigenspace. Let tho
points f. and f, be the projections of the two images ie
eigenspace. It is well-known in pattern recognition theor:
[Oja 83] [Murase and Nayar 93] that the distance betweep

the two points in eigenspace is an approximation to the cor.
relation between the two brightness images:
: 52 2

e =5 1P Il £~ 1] (13

The closer the projections are in eigenspace, the more similar
are the images in I?. Therefore, the eigenspace is optima] for
computing the correlation between images. It is this prop-
erty that motivates us to develop a learning methodology
based on principal component analysis.

Visual Positioning

We now discuss the automatic positioning of a manipulator
at its desired coordinates q with respect to the viewed ob.
Ject. A brute force solution would be to compare an unknown
input image with all images corresponding to different dis.
crete learning coordinates. Such an approach is equivalent
to exhaustive template matching. Clearly, this is impracti-
cal from a computational perspective given the large number
of learning images obtained. Further, the input image may
not correspond exactly to any one of the learning images,
1.e. the current displacement may lie in between the discrete
ones used for learning.

The parametric eigenspace representation enables us to
accomplish image-displacement mapping in a very efficient
manner. Since the eigenspace is optimal for computing the
correlation between images, we can project the current im-
age to the eigenspace and simply look for closest point on
the manifold. Also, since the manifold is continuous, dis-
placements that are not exactly the ones used for learning
can also be estimated.

Let the robot’s current posttion be q. and the correspond-
ing normalized image be i.. The average ¢ of the learning
set is subtracted from i. and the resulting vector is projected
to eigenspace to obtain the point:

(14)

The positioning problem then is to find the minimum dis-
tance d between f. and the manifold f(q):

fc = [eI; €2, !eI(]T(iC - c)

min

d="q |[f—f(q)] (15)

If d is within some pre-determined threshold value (selected
based on the noise characteristics of the image sensor), we
conclude that the manipulator lies within the range of co-
ordinates used for learning. Then, positioning is rqduced
to finding the coordinate g. on the manifold correspond-
ing to the minimum distance d. In practice, the manifold
is stored in memory as a list of K-dimensional points ob-
tained by densely re-sampling f(q). The closest point to fc
on f(q) can be determined either by exhaustive search (if
the list of manifold points is small}, binary search, or index-
ing. In [Nene and Nayar 93] we have developed an algorithm
that results in near-constant search time of approximately 20
msec on a Sun IPX workstation. Alternatively, q. can be de-
termined from f. by training a regularization network of the
type described in [Poggio and Girosi 90].

3240

Positioning Experiments

We have conducted several positioning experiments. For lack
of space, we present only two of these results. All experi-
ments were conducted using the Adept robot and hand-eye
system shown in Figure 1. Figure 5(a) shows a printed cir-
cuit board. The box shown is the image area (128x128 pix-
els) used for learning and positioning. Note that the image
;s rather complex and includes a variety of subtle features.
Images were acquired using an Analogics digitizer board. In
this experiment, robot displacements were restricted to two
dimensions (z and y). A total of 256 images were obtained
by moving the robot to 16x16 equally spaced discrete points
within a 2cm x 2cm region around the desired position. A
15-dimensional eigenspace was computed using the 256 im-
ages. Each learning image was then projected to eigenspace
and the 256 resulting points were interpolated to obtain a
manifold with two parameters, namely, £ and y. Since we
are unable to display the manifold in 15-D space, we have
shown it (see Figure 5(b)) in a 3-D eigenspace where the di-
mensions are the three most prominent eigenvectors of the
eigenspace. The complete learning process including image
acquisition, eigenspace computation, and manifold interpo-
lation took approximately 11 minutes on a Sun IPX work-
station. The parametric eigenspace is stored in memory as
a set of 251x251 = 63001 points obtained by resampling the
continuous manifold. A robot displacement (z,y) is stored
with each manifold point.

Next, the accuracy of the positioning algorithm was
tested. In these experiments, the robot was displaced by
a random distance from its desired position. The random
positions were uniformly distributed within the 2cm x 2cm
region used for learning. Note that the random positions are
generally not the same as any of the positions used while
learning. The positioning algorithm was then used to esti-
mate the robot’s displacement from its desired position. This
process was repeated 1000 times, each time computing the
euclidean distance (error) between the robot location after
positioning and the desired location. A histogram of posi-
tioning errors is shown in Figure 5(c). The average of the
absolute positioning error is 0.676 mm and standard devi-
ation is 0.693 mm. The positioning accuracy was dramati-
cally improved by simply using a larger number of learning
images. Figure 5(d) shows the error histogram for 21x21 =
441 learning images obtained within the same 2cm x 2cm
displacement region. In this case, the learning process was
completed in approximately 30 minutes. The average abso-
lute error was found to be 0.151 mm and standard deviation
0.107 mm. This reflects very high positioning accuracy, suf-
ficient for reliable insertion of a circuit chip into its holder.
This task was in fact accomplished with high repeatability
using the gripper of the hand-eye system.

Similar experiments were conducted for the object shown
in Figure 6(a). In this case, however, three displacement
parameters were used, namely, z, ¥, and § (rotation in the
z-y plane). During learning the z and y parameters were
each varied within a +lcm range, and § within a +10deg
range for each (z,y) displacement. A total of 11x11x11 =
1331 learning images were obtained and a 5-D eigenspace
computed. The parametric eigenspace representation in this
case is a three-parameter manifold in 5-D space. In Figure
6(b) a projection of this manifold is shown as a surface (z
and y are the parameters, while § = 0) in 3-D eigenspace.
Again, this reduced representation is used only for the pur-

pose of display. The actual manifold is stored in memory
as a set of 65x65x65=274625 points. In this case, the entire
learning process took approximately 5 hours. Once again,
1000 random displacements were used in the positioning ex-
periments. The absolute euclidean positioning errors in z-y
space are illustrated by the histogram in Figure 6{c). An
average absolute error of 0.291 mm and standard deviation
of 0.119 mm were computed. The absolute errors for 8 were
computed separately and found to have a mean value of 0.56
deg and deviation of 0.45 deg. These results again indicate
high positioning accuracy. Figure 6(d) shows that position-
ing accuracy is only marginally improved for this particu-
lar object by doubling the eigenspace dimensionality. Here,
10 eigenvectors were computed to obtain a more descriptive
representation of object appearance at the cost of additional
memory usage. The positioning errors in this case have a
mean of 0.271 mm and deviation of 0.116 mm, and the an-
gular errors a mean of 0.44 deg and deviation of 0.33 deg.
This accuracy was verified by successful insertions of a peg
in the hole of the object.

Visual Tracking

The visual processing aspects of tracking are identical to
that of positioning. The primary difference is in the selec-
tion of learning parameters. In tracking applications succes-
sive images may be assumed to be close to one another since
the manipulator is in the process of tracking the object and
hence always close to the desired position. This implies that
fewer learning samples are generally needed. For any new
image acquired the positioning algorithm is used to deter-
mine the error q. in robot coordinates. This error may be
used as input to a position control system as shown in Figure
4. The control law may vary from a simple PID controller
to more sophisticated adaptive controllers that incorporate
the dynamics of the manipulator as well as delays introduced
by the visnal processing. The position controller generates a
reference point q, for the low-level robot actuator controller.

IMAGE - DISPLACEMENT

MAPPING
Y
— 1 A
q
ROBOT ACTUATOR CONTROL c
- CONTROLLER q, LAW

Figure 4: Schematic diagram of the visual tracking system.

Tracking Experiments

Figure 7(a) shows an object we have used to test the track-
ing algorithm. The box illustrates the 96x96 pixel image
region used for learning and tracking. As in the previous
experiment, robot displacements were confined to three di-
mensions (z,y,8). A total of 13x13x13 = 2197 images were

3241

acquired during the learning stage by using robot displace-
ments within z = + lcm, y = + lcm, § = + 10deg. A
10-D eigenspace was used to represent the three-parameter
manifold. A projection of the manifold (using §= 0) in 3-D
is shown in Figure 7(b).

Each cycle of the tracking algorithm involves the digiti-
zation of an input image, transfer of image data from the
digitizer to the workstation, projection of the input image
into eigenspace, search for the closest manifold point, com-
putation of reference coordinates using a control law, and
communication of the reference coordinates to the robot con-
troller. In the present implementation, all computations are
done on the Sun IPX workstation without the use of any cus-
tomized image processing hardware. The total cycle time at
present is approximately 250msec yielding a control rate of
4Hz. This restricts our present experiments to objects mov-
ing at relatively slow speeds (approximately 0.5cm/sec). It
may be noted that this is merely a limitation of the current
implementation. All computations involved in the image-
displacement mapping are simple and can be easily done at
frame-rate (30Hz) with a single frame-time delay using a
more powerful workstation such as a DEC Alpha machine,
or inexpensive image processing hardware such as a standard
1860 board.

The present control law is based on a simple interpola-
tion/prediction scheme to facilitate smooth manipulator mo-
tion. The tracking accuracy was determined by moving the
object at known velocity along a circle using a motorized
turntable (Figure7(a)). The turntable was rotated through
90 deg, moving the object through a total distance of 19 cm.
In Figures7(c)-(e) the desired and actual coordinates of the
robot are plotted as a function of time. The deviations and
lags that result while tracking are attributed mostly to delays
introduced by the vision computations and the simple con-
trol scheme used. Our current work is geared towards over-
coming these limitations to achieve higher tracking speeds.
Also, the experiments reported here were confined to three
end-effector parameters (z,y,0). We are currently explor-
ing extensions to positioning/tracking problems that involve
more than three degrees of freedom.

Acknowledgements

The authors would like to thank Nikolaos Papanikolopoulos
and Peter Allen for their comments on this paper.

References

[Weiss et al. 87) L. Weiss, A. Sanderson, and C. Neuman,
Dynamic sensor-based control of robots with visual feed-
back, IEEE Journal of Robotics and Automation, Vol.
RA-3, No. 5, pp. 404-417, Oct. 1987.

[Feddema et al. 91] J. Feddema, C.S.G. Lee, and O.
Mitchell, Weighted selection of image features for re-
solved rate visual feedback control, IEEE Transactions
on Robotics and Automation, Vol. 7, No. 1, pp. 31-47,
Feb. 1991.

[Koivo and Houshangi 91] A. Koivo and N. Houshangi,
Real-time vision feedback for servoing robotics manipu-
lator with self-tuning controller, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 21, No. 1, pp. 134-
142, Feb. 1991.

[Hashimoto et al. 91] K. Hashimoto, T. Kimoto, and H.
Kimura, Manipulator Control with Image-Based Visual

Servo, Proceedings of IEEE International Conference
on Robotics and Automation, 1991, pp. 2267-2271.

[Papanikolopoulos et al. 91]

N. Papanikolopoulos, P. Khosla, and T. Kanade, Adap.
tive robotic visual tracking, Proceedings of Automatic
Control Conference, 1991.

[Luo et al. 88] R. Luo, R. Mullen, ard D. Wessel, An Adap.
tive Robotic Tracking System using Optical Flow, Pro.
ceedings of IEEE International Conference on Robotics
and Automation, 1988, pp. 568-573.

[Allen et al. 92] P. K. Allen, A. Timcenko, B. Yoshimi, and
P. Michelman, Trajectory Filtering and Prediction for
Automated Tracking and Grasping of a Moving Ob.
Ject, Proceedings of IEEE International Conference on
Robotics and Automation, Nice, 1992, pp. 1850-1856.

[Kuperstien 87) M. Kuperstien, Adaptive visual-motor co-
ordination in wmultijoint robots using parallel architec-
ture, Proceedings of IEEE International Conference on
Robotics and Automation, Raleigh, N.C., 1987, Pp.
1595-1602.

[Mel 87] B. W. Mel, MURPHY: A robot that learns by do-
ing, AIP Proceedings of Neural Information Processing
System Conference, Denver, CO, 1987.

[Miller 89] W. T. Miller, Real-time application of neural net-
works for sensor-based control of robots with vision,
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 19, No. 4, pp. 825-831, July/August, 1989.

[Walter et al. 90] J. Walter, T. Martinez, and K. Schul-
ten, Industrial robot learns visuo-motor coordination
by means of neural-gas network, Proceedings of Inter-
national Joint Conference on Neural Networks, June,
1990.

[Albus 75] J. S. Albus, A new approach to manipulator con-
trol: The cerebellar model, Transactions of ASME, Jour-
nal of Dynamic Systems Measurement and Control, Vol.
97, pp. 220-227, Sept. 1975.

[Miller 87} W. T. Miller, Sensor-based control of robotic ma-
nipulators using a general learning algorithm, IEEE
Journal of Robotics and Automation, Vol. RA-3, No.
2, pp. 157-165, April, 1987.

[Oja 83] E. Oja, Subspace methods of Pattern Recognition,
Research Studies Press, Hertfordshire, 1983.

[Murakami and Kumar 82] H. Murakami and V. Kumar,
“Efficient Calculation of Primary Images from a Set
of Images,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 4, No. 5, pp. 511-515,
September 1982.

[Murase and Nayar 93] H. Murase and S. K. Nayar, “Learn-
ing and Recognition of 3D Objects from Appearance,”
Proc. of IEEE Workshop on Qualitative Vision, pp. 39-
50, June 1993. :

[Rogers 90] D. F. Rogers, Mathematical Elements for Com-
puter Graphics, 2nd ed., McGraw-Hill, New York, 1990.

[Nene and Nayar 93] S. A. Nene and S. K. Nayar, “Binary
Search Through Multiple Dimensions,” Technical Re-
port CUCS-26-93, Department of Computer Science,
Columbia University, August, 1993.

[Poggio and Girosi 90] T. Poggio and F. Girosi, “Networks
for Approximation and Learning,” Proceedings of the
IEEE, Vol. 78, No. 9, pp. 1481-1497, September 1990.

3242

(b)

150
125
100
75
50
25
0

256 Learning Images

Input Images

0 24 48 72 96 12 1.44 1.68 X
(c) Positioning Error (mm)

300 441 Learning Images

250
200
150
100

50

0 | —
0 24 48 72 96 12 1.44 1.68 X
()] Positioning Error (mm)

Input Images

Figure 5: Visual positioning experiment: printed circuit board.
(a) Image window used for learning and positioning. (b) Para-
metric eigenspace representation of displacement image map-
ping displayed in 3-D. Displacements are in two dimensions (x
and y). Histograms of absolute positioning error (in mm) for (c)
256 learning images and (d) 441 learning images.

e3

0.15
0.05
-0.05
-0.15

AT

RIS
35S

-04 03

0
el 01932 03704

(b)
250 .
5D Eigenspace
200
v
& 150
[}
£
= 100
-
g
= 50
0 24 48 72 96 1.2 1.44 1.68 X
©) Positioning Error (mm)
300
10D Eigenspace
250
g 200
«
E 150
2 100
=
50
0 24 48 72 96 1.2 144 1.68 X
(d) Positioning Error (mm)

Figure 6: Visual positioning experiment: object with hole and
slot. (a) Image window. (b) Parametric eigenspace represen-
tation displayed in 3-D. Displacements are in three dimen-
sions (x, y, 0). Histograms of absolute positioning error (in
mm) for (¢) 5-D eigenspace and (d) 10-D eigenspace.

3243

(@
120 EL0 desired —
. actual -—
\\\
100 ¢ \\\.‘
80 .
E N 3N,
560 N]
» N
40 .
N
\\\
20 \]
0 I I i 1 1
10 20 30 40 50 60
(© t (sec)
100 T T . r T
desired —
actual - A
80]
r/\/
,/
60 s -
o0 o~
@ J
= fad
@ 40 - 1
I
i,
20 + -~ 1
7 \\J/\/’
7
"/
0 7 L 2 s s N
0 10 20 30 40 50 60
(e) t (sec)

e3
0.15-

0.1
0.05

0.05
-0.1
0.15

120

T T T

desired ——
actual -~

(d

10 20 30

t (sec)

40

50

60

120

[}
(=}
T

1 1

2

0
0

10 20 30

® t (sec)

Figure 7: Visual Tracking experiment: moving electric socket. (a) Image Window. (b) Parametric eigenspace representation.
Desired and actual coordinates: (c) x(t); (d) y(t); and (e) 8(2). (D) Tracking distance error d(t).

3244

40

50

60

