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Semantic segmentation models comprise an encoder to extract features and a classifier for prediction. However,
the learning of the classifier suffers from the ambiguity which is caused by two factors: (1) the weights of a
classifier for similar categories may have positive similarities lowing the performance for similar categories,
named correlation ambiguity, and (2) the classifier is prone to predict the category with a larger #, norm and
vice versa, termed prior ambiguity. To comedy the issues, we propose Category-Basis Prototype (CBP), frozen

and mutually orthogonalized prototypes with equal #, norm. Orthogonalization prevents the prototypes
from being similar to each other and the equality decouples the prediction from the #, norm. To better shape
the feature space, we propose Online Centroid Contrastive Loss (OCCL) equipped with centroid and category-
level losses. Experiments show that our method yields compelling results over two widely applied benchmarks
indicating the effectiveness of our methods.

1. Introduction

As one of the most significant computer vision tasks, semantic
segmentation aims to assign each pixel its corresponding category. Ben-
efiting from the development of deep learning, e.g., from ResNet [1] to
ViT [2], we have witnessed the great advance of semantic segmentation
these years.

To obtain good performance, careful designs for both the encoder
to extract features from the input images and a classifier to map
the features from the encoder into the category space are significant.
For the encoder, as the first fully convolutional network, FCN [3]
paves the way for the following segmentation networks. Since then
the encoder network has developed from a CNN-based model [3] to
a transformer-based model [4].

In addition, for the classifier, besides the original design which
is learned by gradient descent algorithm, ie, 1 X 1 convolution
layer, prototype-based classifiers [5], as shown in Fig. 1, have also
been achievable recently. Prototype-based classifiers, especially multi-
prototype-based classifiers, for a specified category, e.g., a person,
the network first separates the area belonging to the category into
several pieces by different prototypes. Then the pixels belonging to the
corresponding area are forced to be close to the prototypes. Concretely,
groups of prototypes are randomly initialized for each category. Then,
based on an assignment algorithm, e.g., Sinkhorn-Knopp iteration [5],
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the pixel-level features are assigned to these prototypes. Finally, these
prototypes are updated by the Exponential Moving Average (EMA) [6]
based on the assigned features. Moreover, to further expand the inter-
class variance, these methods also apply contrastive learning [6] to pull
the features and corresponding prototypes together [5] and push others
apart.

However, we argue that the learning of classifiers remains sub-
optimal attributing to the ambiguity which makes the pixels hard to
distinguish compared with the ideal situation where all the categories
are equal to be classified as shown in Fig. 2(a). The ambiguity is caused
by: (1) the weights for similar categories, e.g., sofa and chair, obtain
positive similarities after training, namely correlation ambiguity as
shown in Fig. 2(b) and (2) the #, norm of each weight is coupled with
prediction of one pixel, namely prior ambiguity as shown in Fig. 2(c).
Correlation ambiguity leads to misclassification among the categories
with similar semantics, and prior ambiguity makes the categories with
higher #, norm easily gain greater confidence and vice versa leading
to bias during inference. Meanwhile, the pixel-wise supervision is also
insufficient as the intricate semantic information.

To tackle the aforementioned problems, we model semantic seg-
mentation as an implementation of the Expectation Maximization (EM)
algorithm by proposing Category-Basis Prototypes (CBP). Formally,
we predetermine a group of mutually orthogonalized vectors as
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Fig. 1. Illustration of the prototype-based classifier. In this example, there are three prototypes for person, and the prototypes update based on the assigned features.
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Fig. 2. Different situations of decision boundary: (a) ideal situation, (b) affected by correlation ambiguity, (c) affected by prior ambiguity.

the prototypes for each category and freeze them during training.
Consequently, CBP aligns with the pixel-level supervision signal, i.e.,
one-hot labels, which effectively alleviates the correlation ambiguity.
Furthermore, we equalize the #, norm for each prototype to decouple
the prediction from the #, norm of the corresponding prototype, which
is different from most of the existing works that simply normalize
the prototypes [7] to alleviate the prior ambiguity. As a result, the
semantic segmentation can be viewed as the EM algorithm where the
initialization of CBP can be viewed as the E-step, and the training can
be modeled as the M-step. However, only relying on the CBP may lead
to the relaxation of representations as the decrease in the depth of the
network. As a result, we propose the Online Centroid Contrastive Loss
(OCCL) module in light of some recent research [6]. OCCL comprises
two individual losses: centroid loss and category loss. We assume that
different objects belonging to the same category are data augmentation
from each other. Based on this assumption, in the former centroid loss,
the centroid loss separates the features belonging to the same categories
into two groups, serving as two views of one category. Then the view
centroids (VC) are produced by averaging the features in each view,
and the category centroids (CC) are the average of both views. The
InfoNCE loss [8] is then calculated among VC and CC to employ the
two VCs of the same category close and apart from other CCs. The latter
category loss aims to make each CC apart from other ones and close to
its corresponding CBP. As a result, inter-class centroids are apart while
intra-class representations are gathering.

Our contributions can be summarized as follows: (I) We propose
CBP, a new design of classifier, which converts the semantic segmenta-
tion to an implementation of the EM algorithm. (II) We approach OCCL
to better shape the feature space based on CBP. (III) Extensive exper-
iments are conducted on two semantic segmentation benchmarks, i.e.,

ADE20K [9] and COCO-Stuff [10]. Experimental results show that our
approach achieves promising results on both datasets and proves that
the CBP, ie., frozen prototype, performs better than either learnable
prototypes or classifiers.

2. Related works
2.1. Semantic segmentation

As the first end-to-end semantic segmentation network, FCN [3]
applies the model which performs well in the image recognition task,
e.g, ResNet [1] as the backbone to extract features and proposes its
carefully designed encoder for dense prediction. Since it was proposed,
many great works focusing on the design of encoders have improved
the ability to extract strong features. For example, DeepLabV3 [11]
focuses on enlarging the receptive field, and [12] focuses on utilizing
the attention mechanism to extract more representative features. After
ViT [2] proves the potential of transformer in computer vision, the
transformer-based encoder for semantic segmentation has also been
facilitated, and many impressive works, e.g., Segformer [4], have been
proposed, and achieve state-of-the-art performance. Recently, with the
development of large-scale models, the design of the encoder has also
entered a new era. SAM [13] as one of the most representative works,
has learned a general notion of what objects are, resulting in a signifi-
cant impact on computer vision. However, SAM still suffers from a lack
of semantic information. To solve these issues, Semantic-SAM [14] are
proposed, respectively. Additionally, SAM has also been applied in 3D
vision tasks and achieves impressive performance, e.g., anything3d [15]
and SAM3D [16]. However, training such models needs lots of data and
proper fine-tuning.
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Though many works have been proposed for improving the ability
of encoders, the design of classifiers, i.e., 1 X 1 convolution layer,
remains unchanged for a long time. Recently, some works that apply
clustering methods, e.g., ProtoSeg, [5], and generative methods, e.g.,
GMMSeg [17], have been approached, which can better handle the
structure of the training data. However, these classifiers still suffer
from correlation ambiguity and prior ambiguity problems. Though
several works try to solve the prior ambiguity by normalizing the
prototypes [7], the prior ambiguity is still ignored. Despite some
works, e.g., slimmable dataset [18], applying orthogonality as a reg-
ularization term, i.e., forcing the cosine similarity between one feature
and others to zero, e.g, DD [19], the prior ambiguity still exists. In
this paper, we tackle the prior ambiguity and correlation ambiguity
problem together by designing an orthogonal classifier and take a
step further to equalize the #, norm of the prototypes rather than
simply normalizing. Meanwhile, the orthogonality is applied in the
initialization of the classifier and is not utilized as a regularization term.
Besides, our method can be seen as an assembly between a trainable
image encoder and an unlearnable classifier. However, different from
training with multi models, e.g, deep reassembly [20], deep graph
reprogramming [21], TAM [22], our model contains only one model
rather than multi-models. Different from some works that freeze the
image encoder during training and train another module to classify
novel categories, e.g., CWT [23], PCN [24], and UOTSL [25], our
method works in close datasets and freezes classifiers rather than image
encoders.

2.2. Contrastive learning

The core idea of contrastive learning is to build positive and neg-
ative pairs and enable the positive pairs closer and the negative pairs
apart. By mining the mutual information between the positive pairs,
the network can learn robust features for vision tasks. Many works,
e.g., MoCo [6], have been proposed based on this idea and have transfer
ability to downstream tasks. Some works only rely on the positive pairs,
e.g., SimSiam [26].

Different from the instance discrimination tasks, the main challenge
of segmentation based on contrastive learning is to build positive and
negative pairs from dense pixels. The generation can be grouped into
online-based methods [5] where the data is sampled from the mini-
batch and offline-based methods [7] where the data is sampled from a
large memory bank. However, for online-based methods, the generation
of the positive pairs is non-stable suffering from the limited batch size.
Offline-based methods need lots of memory to store elaborately selected
negatives covering all classes. Recently, generative-based methods [17]
have been proposed, their data is generated from a distribution but they
need to fit a prior ambiguity distribution. In this paper, we propose
a novel approach that provides stable prototypes without the need
for extra resources such as a memory bank or fitting an ambiguous
distribution. Our approach is different from existing works such as
NAT [27], where randomly initialized vectors from noise distributions
are orthogonalized, and contrastive loss is utilized instead of MSE loss
for optimization. Additionally, our approach differs from [5] in that we
predefine the prototypes and freeze them during training.

3. Methodology

In this section, we first illustrate the problems that the classifiers in
prevalent segmentation models face: the ambiguity. To address the issue,
we predetermine mutually orthogonalized and frozen prototypes,
i.e., Category-Basis Prototypes (CBP), to convert segmentation into an
implementation of EM algorithm based on CBP. To better consider the
relationship of pixels, we propose Online Centroid Contrastive Loss
(OCCL). OCCL compacts the features belonging to the same category
and pushes them from other classes. This section is arranged as follows.
Section 3.1 introduces the research question to be resolved in this
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paper. Section 3.2 introduces the category-basis prototypes. Section 3.3
approaches the OCCL to better shape the feature space. Finally, we in-
troduce training objectives in Section 3.4. The overview of the proposed
method can be seen in Fig. 3.

3.1. Problem formulation

Given a set of data D = {(x;, yi)}?il where x and y indicate the
image and its corresponding label and M denotes the size of the
dataset, the goal of semantic segmentation is to assign each pixel its
corresponding category. The prevalent design for a semantic segmenta-
tion network consists of an encoder E,(.) to extract dense visual features
from the input images, and a classifier g,(.) to project the features to
the semantic space. The probability that a pixel i is assigned to class /
is,

CXp(gqs(f,-)T - wy)
X, exp(gy ()T - w,)
where p(/|i) € [0, 1] indicates the probability that pixel i is assigned to
class /, f; € F is the feature of pixel i where F € RB*C*H*W indicates the
features from E,(.), n € N denotes the number of categories. We RN*C
indicates the prototypes for all N categories, w; € W implies the /th
prototype from W. The inner product in Eq. (1) equals,

g7 - w; = llggUDN - Nyl - cos (g4(f) wy), @)

where || - || denotes the #, norm of a vector and cos(-,-) denotes the
cosine similarity between two vectors. Eq. (2) implies that p(/|i) relates
to the #, norm of the classifier’s weights, except for the cosine similarity
between features and the weights of the classifier. We summarize
this problem as prior ambiguity. Meanwhile, we observe that the
classifier’s weights for the categories with similar semantics always
have positive similarities with each other. Though this fact aligns with
people’s intuition, it violates the pixel-level supervision signal, i.e., one-
hot labels, which are orthogonal with each other, failing to preserve the
positive similarities between similar categories. This problem is termed
correlation ambiguity. These two problems impede the generalization
ability of the segmentation models, namely ambiguity, i.e., a pixel may
be misclassified to the classes which have similar semantic information
or the classes with more pixels in a dataset. Though research endeavors
have made efforts in solving the prior ambiguity [7], the correla-
tion ambiguity which hinders the perception of correlation between
categories with similar semantics is always ignored. Meanwhile, we
take a step further to expand the simple normalization to equalization.
Differently, we propose to solve the ambiguity by redesigning the
classifier, i.e., CBP.

pdli) = (€8]

3.2. Category-basis prototype

To address the ambiguity, we propose the category-basis prototype.
Specifically, suppose there are N unique categories in a dataset. Before
the training process, We randomly initialize N vectors based on Kaim-
ing Initialization [28] We R"*C where C denotes the channel number.
Then we orthogonalize W by the Gram-Schmidt algorithm and equalize
the 7, norm of the orthogonalized vectors. The overall initialization
process can be shown in Algorithm 1.

For the correlation ambiguity, as we freeze the category-basis pro-
totypes they are always orthogonalized with each other, which pre-
vents them from being similar to each other. For the prior ambiguity,
the 7, norm of each weight is equal, and the classification prob-
ability is decoupled from the #, norm of both the representation
and the prototypes, only depending on the cosine similarity with the
prototypes.

Besides, another benefit of applying category-basis prototypes is
that the semantic segmentation is converted to a clustering problem
based on frozen prototypes. More precisely, the initialization of CBP can
be viewed as the E-step in the EM algorithm [26] where the centers of
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Fig. 3. The illustration of the overall framework. The input images are first fed into an encoder to obtain dense features. Then, these features are cast to the space spanned by
the CBP. Finally, the pixel-level loss, i.e., cross-entropy, and OCCL is applied for optimizing.

Algorithm 1 The initialization of category-basis prototypes. We first
randomly initialize N vectors from Kaiming initialization [28], where
N denotes the category number in a dataset, and the #, norm of the
vectors T'.

1: Randomly initialize We RN*C # Initialize the prototypes to be

orthogonalized.
2: =@, a =@, T # Initialize the temporal results and the #, norm
value.

3: p.append(W[1]), a.append(W[2], W[3]..W[N]) # Separate the W
and assign them to « and p.

4: for each g¢; € « do

5. temp =0 # Initialize a temporal result.

6: for each b; € p do

7: v= :;Zj # Compute the weight for each b;.

8 temp - temp + v - b; # Update the temporal result.

9: end for

10:  p.append(q; — temp) # Add the temporal results to the list of 4.
11: end for

12: g = \/% # Equalize the ¢, norm of the prototypes.

13: return g

each category are defined. However, the CBP is initialized without any
prior knowledge, e.g., language information [29], or any update,
e.g., gradient decent [3] or EMA [5]. The optimization of the network
can be seen as the M-step where each pixel is pulled together with the
corresponding centers. Different from the existing works, our method
provides a frozen center and extends normalization to equalization.
Moreover, CBP spans a linear space with the same dimension, ie., N,
as the supervision signal.

3.3. Online centroid contrastive loss

After mitigating the correlation and prior ambiguity problem at the
pixel level, we further propose to measure the relationships among
pixels, e.g., intra-class compactness, to improve the segmentation per-
formance. To better shape the feature space, we approach Online
Centroid Contrastive Loss (OCCL). First, we define the View Centroid
(VC) v; as the average of the features belonging to /th category in the
ith view. More precisely, given the features F € RB*C*H*W extracted
from E,(.) and their label y, where B,C, H, W denote the batch size,
channel, height, and width of the features, respectively. We equally
divide y into two parts and get y, and y, as two different views of y

where y, contains the same number of categories as y while the number
of objects is half. Then v;; can be computed as,

_ ZB,H,W Fl1(y; = D]
C Ypawlle=01"

where 1 implies whether the pixel belongs to the category /, and i €
[1,2] indicates the ith view. The OCCL consists of centroid loss and
category loss.

Centroid Loss. Motivated by the recent advance in contrastive
learning [6], we assume different objects in a mini-batch belonging
to the same category as a data augmentation from each other. During
training, we split the y into y, and y,. Then, given F and y,, y,, the v,
and v, are calculated by Eq. (3). Then the centroid for category s, is
obtained by averaging v, and v;,, namely Category Centroid (CC). The
contrastive loss driven by InfoNCE [8] can be calculated between VC
and CC,

3

Uji

exp(u, - v;p/7)

L,(v,)=2N ,
v ! Z].’;’Hexp(vax - SG(s)) /) + exp(vﬁ Uy /7T)

C)

where 7 is the hyper-parameter to scale the inner product among all
the centroids and SG is the stop gradient operation, N indicates the
number of categories, and x € [1,2] indicates the index of view.

Category Loss. Besides the centroid loss, we propose category loss
to make each category closer to its corresponding CBP. Given view
centroid v;; and w € W, the category loss is obtained by,

exp(0!, - 10,/)

L) =3N , (5)
" ! Z}.’Lexp(u; “w;/7) +exp(’] - w;/7)
The total loss function of OCCL is,
Ax (L L L L
Lo (i) = #* (Ly(v) + Ly(vp) + & * (L.(v) + c(Ulz))’ ®)

2
where 1 and ¢ are two hyperparameters scaling the corresponding loss.

Relations to the previous paradigm. The contrastive loss can
be modeled as a matching problem between queries and keys [6].
For centroid loss, our method differs from the existing works in the
generation of queries and keys. The queries and keys are all generated
in an online manner, while the related work [30] obtains keys from
a large memory bank. Consequently, our method is simpler, easier to
implement, and more efficient.

For the category loss, similar to the random initialization strategy
in NAT [27], we also sample the prototypes randomly from a noise
distribution, but the orthogonal operation brings category-related in-
formation to the prototypes. In addition, the keys are all frozen, which
is different from the existing works that update them by either gradient
decent [31] or EMA [5].
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Table 1
Quantitative results on ADE20K and COCO-Stuff datasets.

ADE20K COCO-Stuff

Pub Head Backbone mloU A Pub Head BackBone mloU A

ECCV18 DeepLabv3+ [11] RN101 [1] 44.1 - CVPR19 SVCNet [32] blue [1] 39.6 -

NeurIPS21 MaskFormer [33] blueRN101 [1] 46.0 - ECCV18 DANet [34] RN101 [1] 39.7 -

ECCV20 OCR [12] HRFormer-B [35] 48.7 - ICCV19 SpyGR [36] RN101 [1] 39.9 -

ICCv21 UPerNet [37] Swin-B [38] 48.0 - NeurIPS21 MaskFormer [33] RN101 [1] 39.8 -

CVPR22 ProtoSeg [5] Swin-B [38] 48.6 +0.6 CVPR22 ProtoSeg [5] Swin-B [38] 42.4 +0.9

NIPS22 GMMSeg [17] Swin-B [38] 49.0 +1.0 NIPS22 GMMSeg [17] Swin-B [38] 44.3 +0.7

ICLR23 DNC [39] Swin-B [38] 48.6 +0.6 ICLR23 DNC [39] Swin-B [38] - -
FCN? [3] N 39.9 FCN® [3] N 32.5

CVPR15 FCN [3] + ours RN101? [1] 4.2 +1.3 CVPR15 FCN [3] + ours RN101? [1] 33.0 +0.5
UperNet [37]* 48.9 UperNet® [37] 43.6

PR22 Next-B +0. PR22 Next-B* +0.

CVPR UperNet [37] + ours ConvNext (401 49.6 0.7 CVPR UperNet” [37] + ours ConvNext 401 44.2 0.6
UperNet® [37] R 47.8 UperNet” [37] . 41.5

CVPR21 UperNet [37] + ours Swin-B" [38] 48.5 +07 CVPR21 UperNet [37] + ours Swin-B" [38] 42.6 +11
Segformer® [4] . R 48.9 Segformer® [4] . . 43.4

NeurIPS21 Segformer [4] + ours MiT-B5% [4] 49.9 +1.0 NeurIPS21 Segformer [4] + ours MiT-B5% [4] 44.9 +1.5

2 Indicates reimplemented method. 4 indicates the improvement compared with the baseline performance.

3.4. Training objectives

Before training, we first initialize the category-basis prototypes
based on the algorithm in Section 3.2. Then we employ both the cross-
entropy at the pixel level and the OCCL at the centroid level. In a
nutshell, the total loss is

L= LyEy)" - W.5) + Loe(A P, %)

where £ indicates the total loss, £, denotes the cross entropy loss at
pixel-level between the prediction and its ground truth y, £,..(4, ¢)
indicates the OCCL.

4. Experiments
4.1. Experiment setup

Dataset and Implementation Details. We demonstrate our results
on two semantic segmentation benchmarks: ADE20K [9] and COCO-
Stuff [10]. ADE20K is a large-scale scene parsing benchmark dataset
that covers 150 categories. The dataset contains a training dataset with
20K images, a validation dataset with 2K images, and a test dataset
with 3K images. COCO-Stuff contains 10K images including 9K training
images and 1K test images. There are 80 object categories, 91 stuff
categories, and 1 unlabeled.

Our codes are based on the MMsegmentation, following the default
settings for each dataset. Specifically, all the backbones are first pre-
trained on ImageNet1K and the rest layers are randomly initialized. The
augmentation techniques include random scale jittering with a factor
in [0.5, 2], random horizontal flipping, random cropping, and random
color jittering. For convolution models the optimizer is SGD and for
transformer-based models is AdamW. The learning rate is scheduled
following the polynomial annealing policy. In addition, the batch size
for both datasets is set to 16. The crop size is set to 512 pixels x 512
pixels. The models are trained for 160K and 80K iterations on ADE20K
and COCO-Stuff, respectively. 7 is set to 0.07 and the length is set as 2
by default.

Evaluation. For both datasets, we rescale the short scale of the image
to train crop size while keeping the aspect ratio unchanged. Our model
is trained and tested on 8 V100 (32 GB) GPUs. We report the mean
intersection over union (mlIoU) score for each model. Note that we do
not use tricks, e.g., multi-scale testing, test-time augmentation, in
inference.

Table 2
Resource consumption comparison and A4 indicates the performance improvement
compared with the baseline performance.

Model Backbone Memory fps Params  GFlops 4
Swin [38] Base [38] 10079MB  23.4 120.0M  300.0 -
FCN [3] RN101 [1] 18439MB  28.8 66.2M 276.0 -
GMMSeg [17] MiT-B5 [4] 30513MB  10.2 84.9M 111.0 +0.6
Segformer + Ours 7021MB 19.5 82.1M 75.6 +1.0
Segformer . 5969MB 241 61.4M 59.3
MiT-B +0.

+Ours {T-B4 [4] 6071MB 239 61.5M 59.6 0.5

ConvNext [40]
+Ours

5279MB  16.6 121.0M  293.0
Base 101 gooiMB 165 121.0M 2060 O

4.2. Comparison with state-of-the-art

ADE20K. Table 1 reports the results of representative segmentation
models on ADE20K dataset. For different models, we conduct extensive
experiments and choose the hyperparameter that can obtain the best
performance. In a specific, A is set as 0.4 and the ¢ is set to 0.1
for FCN [3], 1, 0.2 for ConvNext [40], Swin Transformer [38], and
1, 0.1 for Segformer [4]. Besides, the length of the CBP is set as 1
for Swin-Transformer [38] and Segformer [4]. Our models gain the
expected improvements on both convolutional-based and transformer-
based models. In specific, for convolutional models, combining our
proposed CBP and OCCL outperforms the original baseline by a large
margin which is 1.3% and 0.7% mloU for FCN and ConvNext, re-
spectively. For the transformer-based models, ie., Swin-transformer
and Segformer, applying our CBP and OCCL achieves significant im-
provements of 0.7% and 1.0% mlIoU than the baseline performance.
The qualitative results on the ADE20K dataset are shown in Fig. 7.
Benefiting from the proposed CBP and OCCL, the model can outperform
its corresponding baseline methods. Meanwhile, compared with the
SOTA methods on the performance improvements, we can find that
under the same backbone, i.e., SwinTransformer-Base [38], our meth-
ods can achieve similar improvements to ProtoSeg [5] and DNC [39],
and a little bit lower improvement than GMMSeg [17]. However, our
methods need fewer resources than GMMSeg.

We further analyze the consumption of computational resources
for the proposed methods as shown in Table 2. Note that in this
experiment, we use one RTX A6000 GPU to report the performance.
Compared with the SOTA methods, e.g., GMMSeg [17], under the same
Segformer-B5 backbone, our methods can achieve similar mIoU scores
on the ADE20K dataset while costing less i GPU memories (7 GB vs.
30 GB) during training. Besides, during testing, the proposed methods



~

Chen et al.

mloU Scores
w
kS
EY

342 “u

00 01 02 03 04 05 06 07 08 09 10
Variables (A / ¢)

Fig. 4. Ablations on training objectives. X-axis shows the non-frozen parameter. When
freezing A, the x-axis implies ¢ and vice versa. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

can achieve over twice as fast inference speed (19.5 fps vs. 10.2 fps)
and much fewer GFlops (75.6G vs. 111.0G) and number of parameters
(82.1M vs. 84.9M). Meanwhile, we can achieve higher improvements
(1.0 vs. 0.6) compared with GMMSeg [17]. Compared with the baseline
methods, our methods can achieve exceptional improvements, e.g,
0.5% in mloU using Segformer-B4 backbone with little increase of
resources.

COCO-Stuff10K. We also conduct experiments on the COCO-Stuff
dataset to demonstrate the effectiveness of our proposed CBP and
OCCL as shown in Table 1. For different models, the hyperparameters
are different. In a specific, A is set as 1 and the ¢ is set to 0.3
for FCN [3], ConvNext [40], Swin Transformer [38], and 1, 0.1 for
Segformer [4]. Besides, the length of the CBP is set as 0.3 for FCN [3],
3 for ConvNext [40], and 1 for Segformer [4]. For convolutional-based
models, compared with the basic models without our methods, the
performance gain is 0.5% and 1.1% in FCN and ConvNext, respectively.
Our methods consistently outperform the baseline of transformer-based
models. More precisely, CBP and OCCL bring performance gains of
0.6% and 1.5% mloU with Swin-transformer and Segformer models.
When it comes to performance improvement, we can achieve even
higher performance gain than the SOTA methods, i.e., GMMSeg and
ProtoSeg, which indicates the effectiveness of our methods.

4.3. Ablation study

To investigate the effectiveness and rationality of our proposed CBP
and OCCL, we use the Segformer-B0 model as the baseline and conduct
ablation studies on the ADE20K [9] dataset. The model we use in this
section is trained with 40K iterations. For the OCCL, the ¢ is set to 0.3,
A as 1.0.

The effectiveness of the proposed modules. We first investigate
the effectiveness of the newly proposed methods, i.e., CBP and OCCL,
as shown in Table 3. We first ablate all the proposed modules to obtain
a base model for evaluating the proposed modules. The baseline model
achieves 33.4% mloU score and 44.4% mAcc scores. Then we only
introduce CBP to the baseline model, and we find that this model
achieves similar performance which is 33.5% in mlIoU and 44.4% in
mAcc. We think this is because CBP is discriminative enough as the or-
thogonality, which proves the effectiveness of the proposed CBP. Then
we validate the effectiveness of the OCCL, and we can observe that the
performance gain is expected which is 0.9% in mIoU score and 1.4%
in mAcc. Finally, we combine the two proposed modules and achieve
a performance gain by a large margin which is 1.7% in mlIoU score
and 3.3% in mAcc. The ablation studies above prove that both of the
proposed modules can bring merit to the semantic segmentation task.
We also visualize the similarity map of the weights in the classifier for
the baseline model, i.e.learned by gradient descent, and the proposed
ones, i.e., CBP. As there are 150 categories in ADE20K [9] dataset, we
only randomly sample some categories as shown in Fig. 6.
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Table 3
Ablation on the effect of CBP and OCCL.
CBP OCCL mloU mAcc
- - 33.4 44.4
v - 335 44.4
- v 34.3 45.8
v v 35.1 48.1
Table 4
Ablation on update strategies of CBP.
Update mloU mAcc
Frozen 35.1 48.1
Gradient 34.6 46.1
EMA 29.9 41.8
Penalty 34.4 45.9

Different update strategy for the category-basis prototype. In
Section 3.2, we argue that freezing the CBP during the training process
is a good choice as it matches the supervision signal. To investigate
whether freezing the CBP is an optimal way for the category-basis
prototype, we conduct experiments with different update strategies for
the category-basis prototype. We apply the same initialization, i.e.,
orthogonalization, and equalization at the beginning of training, and
the only difference among them is how to update the parameters in
the CBP. We set our frozen CBP as the baseline. As shown in Table 4,
we compare our frozen CBP with the updated CBP by gradient and
clustering. In this experiment, “EMA” means that the CBP is updated by
the EMA of CC. We can find that no matter whether the CBP is updated
with the gradient-based or cluster-based method, the performance of
will drop drastically, i.e., from 35.1% — 29.9% in mloU and 48.1% —
41.8% in mAcc for clustering-based methods. The drop is from 35.1%
— 34.6% in mIoU and 48.1% — 46.1% in mAcc for the gradient-
based method, which shows that the frozen prototypes are beneficial
for semantic segmentation as preserving the orthogonality. At the same
time, we can further prove that a frozen discriminative initialization
is better than the learning paradigm. Besides, we further conduct an
experiment where the CBP is learnable and always equalized (making
the ¢, of prototypes the same) during training, and we add another
orthogonality loss with a weight of 0.01, i.e., forcing the cosine simi-
larity between one prototype and others to 0, same as [18] to penalize
the prototype. The result is shown in the row of “Penalty” in Table 4.
The mloU is lower than both Frozen and Gradient ones. The reason
we think is that penalizing the classifier rather than the feature space
leads to a constrained classifier and confused feature space. In contrast,
CBP is mutually orthogonalized vectors with the same nature as the
one-hot label, i.e., supervision, and enables the feature space more
distinguished.

Training Objectives. We first investigate our training objectives,
ie., Eq. (7). As L. consists of £, and L,, we ablate these two losses
respectively as shown in Fig. 4. To show the effect of both hyperparam-
eters in the same figure, the x-axis represents the variable that is not
frozen, e.g., if 4 is fixed, the x-axis represents the change of ¢ and vice
versa. For £,, we freeze the hyper-parameter of category contrastive
learning, ie., ¢, as 0.3, and investigate the effectiveness of centroid
contrastive learning as shown in the orange line. Without the centroid
loss, the performance drops at most 0.3%, indicating the significance of
centroid loss. Meanwhile, the scale of the centroid contrastive learning
should also be carefully considered as the performance ranges from
35.4% to 35.1% which is a large gap. Then we freeze the centroid
loss and examine whether the category loss contributes to the model as
shown in the blue line. In Fig. 4, the performance of the segmentation
model benefits a lot from the category loss as the performance gap
between best and worst (without category loss) performance is near
1%. Without category loss, the performance drops from 35.1% to
34.2%.
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Table 5
Ablation on initialization of CBP.
Equal Ortho mloU mAcc
v v 35.1 48.1
- v 33.3 44.6
v - 35.0 47.8
v CLIP 33.2 45.2
v Masked 30.3 41.7
v Masked + v 35.1 48.0
Table 6
Ablation study on orthogonalization.
Initialization Categories Sum_IloU
Equal+Ortho . R 92.3
Equal bike+minibike 92,0 (1 0.3)
Equal+Ortho stairs+stairways 53.8
Equal 4 52.8 (| 1.0)
Equal+Ortho oven+microwave 87.4
Equal 36.1 (| 1.3)
Table 7
Ablation study on equalization.
Initialization Category Amounts mloU
Ortho+Equal 24.3
Ortho flag 105460 17.0 (1 7.3)
Ortho+Equal . 28.9
2 2
Ortho radiator 065 23.6 (1 5.3)
Ortho+Equal 68.4
Fqual wall 39565000 68.4

Different initialization of the category-basis prototype. To ex-
plore whether the prior ambiguity and correlation ambiguity problem
can be mitigated, we yield an ablation experiment to validate the
effectiveness of equalization and orthogonalization shown in Table 5
where Equal denotes whether equalization is applied and ortho in-
dicates whether the orthogonalization is applied. By default, we set
applying both orthogonalization and equalization to initialize the CBP
as a performance baseline. Then we ablate equalization and orthogonal-
ization respectively. The baseline can achieve the best performance in
mloU score and mAcc, i.e., 35.1% and 48.1% at the same time. When
removing equalization, the performance drops drastically to 33.3% and
44.6%. If the orthogonalization is ablated, though the mIoU score does
not change drastically, i.e.from 35.1% to 35.0%, the mAcc drops to
47.8%. Moreover, instead of applying the orthogonality, we initialize
the CBP with the text features produced by the CLIP [29] ViT [2]
text encoder. Compared with the CBP, there is a large performance
drop in both mIoU and mAcc scores, ie., from 35.1% to 33.2% in
mloU and 48.1% to 45.2% in mAcc. The experiments above imply that
both initialization, ie., orthogonality and equalization, contribute to
the higher performance of our methods. Even the features obtained
from foundation models, e.g., CLIP, may not be proper for the semantic
segmentation tasks. Moreover, we use the pretrained backbone of
Segformer-B0 to extract category-level features as prototypes. Note that
these prototypes are also fixed during training. As can be seen from the
second last row of Table 5, performance reaches its worst, i.e., 30.3%
in mloU and 41.7% in mAcc. However, when we orthogonalize them,
the performance is very close to the one with CBP, indicating that the
orthogonality rather than the initialization has a larger impact on the
performance.

Besides, to further investigate if the correlation ambiguity and prior
ambiguity are mitigated, we conducted another two experiments. In the
first experiment to validate the correlation ambiguity, we randomly
select two categories with similar semantic categories, e.g., sofa and
chair, and compute their sum mloU score so that we can test whether
correlation ambiguity is mitigated. As shown in Table 6, we can ob-
serve that without the orthogonalization, the sum mIoU score will drop
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Fig. 5. Quantification of prior ambiguity.

Table 8
Quantification on the correlation ambiguity.

Initialization CS | mloU (%) 1
Equal+Ortho 0 35.1
Equal 6.2 35.0
Learnable 75.8 34.6
Penalty 73.2 34.4

in different scales. For instance, for bike and minibike, the performance
drops 0.3%, and for stairs and stairways, it drops 1.0%. Moreover,
to quantify the class separability and the prior ambiguity, we apply
the confusion matrix to describe the prediction of each pixel and the
equations to show class separability and prior ambiguity,

T
wi w/-

N N
C5=05x Z; I ®
where CS is the class separability w € W means the prototypes for clas-
sification. A large C.S indicates a positive correlation and little distance
between the prototypes, i.e., large class separability. The results are
shown in Table 8. With both normalization and the orthogonality, the
CS and the mIoU achieve their peak, i.e., 0 and 35.1%. When removing
the orthogonality (“Equal”), the class separability and the mIoU drop
to 6.2 and 35.0%. If the prototype is learnable (“Learnable”), the class
separability decreases drastically to 75.8 and 34.6%. For the “Penalty”,
as the classifier is constrained, though the C.S is lower, mloU is also
lower than “Learnable”.

To investigate if the prior ambiguity can be tackled by our methods,
we conducted another experiment. We select several categories with
large and small amounts of pixels, ie., flag, radiator, and wall, in the
ADE20K dataset. We can observe from Table 7 that without equaliza-
tion, the performance of the categories with fewer pixels may descend
by a large margin. For instance, the flag obtains a large performance
drop, i.e., 7.3%, and the radiator 5.3%. By contrast, the wall that main-
tains the pixels 100+ times larger than the previous two categories does
not change. This experiment proves the effectiveness of our proposed
methods. Moreover, note that the relation factor between the number
of pixels in the training dataset and the ¢, norm of the learnable
prototypes have a positive relation factor, i.e., 0.27, the prior ambiguity
always happens in the categories with fewer pixels. To further evaluate
if the prior ambiguity is mitigated, we compute the F1 score of all
the categories and rearrange the F1 scores by the pixel numbers in
the training dataset. Finally, we split and average the rearranged F1
scores into 15 groups, i.e., each bar represents the average F1 scores of
10 categories. The results are shown in Fig. 5. For the categories with
few pixels in the training dataset, our method can obtain better results
than both the no normalization methods and the learnable methods.
For instance, in the first group, our method achieves the average F1
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Fig. 7. Visualization of Segformer-BO baseline and our methods on ADE20K dataset.

Table 9
Experiments on different lengths.
Model Length mloU mAcc
1 34.6 47.6
2 35.1 48.1
Segformer-B0 3 35.3 48.3
4 35.3 48.2
5 35.1 48.1

score of 32.0%, which is 7.7% and 2.5% larger than no equalization
and learnable methods. The positive correlation between the £, norm
and the number of training pixels, i.e., the more pixels the larger #,,
makes the network prone to the category with more training pixels
and vice versa (“No equalization”, “Learnable”) as shown in Fig. 5.
After unifying the ¢, norm (Ours), the network will focus more on the
categories with fewer pixels and mitigate the prior ambiguity.

We also conduct experiments to find the relationship between the
performance and the length, ie., #, norm, of the proposed CBP as
shown in Table 9. We change the length of the CBP from 1 to 5, and

the mlIoU scores range from 34.6% to 35.3%, and the mAcc ranges from
47.6% to 48.2%. From these experiments, we can find that the length
of the CBP is a very sensitive hyperparameter that needs careful design.
Besides, we also tested the stabilization of the proposed methods under
4 different random seeds as shown in 10. From the table, we can find
that our methods can achieve similar performance in both mloU and
mAcc scores.

Meanwhile, we visualize the similarity maps of our CBP and the
learned classifier. We randomly sample some results from the similarity
map as shown in Fig. 6(a). The weight of the normal classifier, ie.,
optimized by gradient, obtains similar positive similarity among most
of the categories, especially for the categories with similar semantics,
e.g, oven and microwave. In CBP, however, the similarities between
each category turn to 0 as shown in Fig. 6(b), which indicates that the
category-basis prototype can solve the problem.

5. Conclusion

In this paper, we propose Category-Basis Prototypes (CBP), a group
of frozen, mutually orthogonalized vectors with equal #, norm to
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Table 10
Experiments on different seeds.
Model Seed mloU mAcc
0 35.1 48.1
1 34.9 47.7
Segformer-B0 2 35.2 48.3
3 34.8 47.7
mean 35.0 £ 0.2 48.0 = 0.3

solve the ambiguity problem that the prevalent semantic segmentation
networks face in the learning of classifier. Moreover, CBP converts
the semantic segmentation to an implementation of the EM algorithm
where the initialization of CBP can be viewed as the E-step, and the
optimization of the segmentation model is seen as the M-step. To better
shape the feature shape, we approach Online Centroid Contrastive
Loss (OCCL). Specifically, the OCCL consists of two individual losses:
centroid loss and category loss. Our experiments show that our methods
achieve the expected performance improvements with minimal modi-
fication and prove that the CBP, i.e., frozen prototype, performs better
than either learnable prototypes or classifiers.

Limitations and Broader Impact. However, there are still lots of
limitations in our work. First, several works have shown that multiple
prototypes may facilitate the performance of the segmentation model,
e.g., ProtoSeg, [5]. Unfortunately, as our CBP is initialized in a novel
manner, it is hard to predetermine several groups of prototypes for
one category. Second, our methods rely heavily on the number of
dimensions in the output features. In specific, if the output dimension is
less than the number of categories, our initialization cannot guarantee
mutual orthogonality among all prototypes, leading to a violation of
our assumptions.
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