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A B S T R A C T

Semantic segmentation models comprise an encoder to extract features and a classifier for prediction. However,
the learning of the classifier suffers from the ambiguity which is caused by two factors: (1) the weights of a
classifier for similar categories may have positive similarities lowing the performance for similar categories,
named correlation ambiguity, and (2) the classifier is prone to predict the category with a larger 𝓁2 norm and
vice versa, termed prior ambiguity. To comedy the issues, we propose Category-Basis Prototype (CBP), frozen
and mutually orthogonalized prototypes with equal 𝓁2 norm. Orthogonalization prevents the prototypes
from being similar to each other and the equality decouples the prediction from the 𝓁2 norm. To better shape
the feature space, we propose Online Centroid Contrastive Loss (OCCL) equipped with centroid and category-
level losses. Experiments show that our method yields compelling results over two widely applied benchmarks
indicating the effectiveness of our methods.
1. Introduction

As one of the most significant computer vision tasks, semantic
segmentation aims to assign each pixel its corresponding category. Ben-
efiting from the development of deep learning, e.g., from ResNet [1] to
ViT [2], we have witnessed the great advance of semantic segmentation
these years.

To obtain good performance, careful designs for both the encoder
to extract features from the input images and a classifier to map
the features from the encoder into the category space are significant.
For the encoder, as the first fully convolutional network, FCN [3]
paves the way for the following segmentation networks. Since then
the encoder network has developed from a CNN-based model [3] to
a transformer-based model [4].

In addition, for the classifier, besides the original design which
is learned by gradient descent algorithm, i.e., 1 × 1 convolution
layer, prototype-based classifiers [5], as shown in Fig. 1, have also
been achievable recently. Prototype-based classifiers, especially multi-
prototype-based classifiers, for a specified category, e.g., a person,
the network first separates the area belonging to the category into
several pieces by different prototypes. Then the pixels belonging to the
corresponding area are forced to be close to the prototypes. Concretely,
groups of prototypes are randomly initialized for each category. Then,
based on an assignment algorithm, e.g., Sinkhorn–Knopp iteration [5],
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the pixel-level features are assigned to these prototypes. Finally, these
prototypes are updated by the Exponential Moving Average (EMA) [6]
based on the assigned features. Moreover, to further expand the inter-
class variance, these methods also apply contrastive learning [6] to pull
the features and corresponding prototypes together [5] and push others
apart.

However, we argue that the learning of classifiers remains sub-
optimal attributing to the ambiguity which makes the pixels hard to
distinguish compared with the ideal situation where all the categories
are equal to be classified as shown in Fig. 2(a). The ambiguity is caused
by: (1) the weights for similar categories, e.g., sofa and chair, obtain
positive similarities after training, namely correlation ambiguity as
shown in Fig. 2(b) and (2) the 𝓁2 norm of each weight is coupled with
prediction of one pixel, namely prior ambiguity as shown in Fig. 2(c).
Correlation ambiguity leads to misclassification among the categories
with similar semantics, and prior ambiguity makes the categories with
higher 𝓁2 norm easily gain greater confidence and vice versa leading
to bias during inference. Meanwhile, the pixel-wise supervision is also
insufficient as the intricate semantic information.

To tackle the aforementioned problems, we model semantic seg-
mentation as an implementation of the Expectation Maximization (EM)
algorithm by proposing Category-Basis Prototypes (CBP). Formally,
we predetermine a group of mutually orthogonalized vectors as
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Fig. 1. Illustration of the prototype-based classifier. In this example, there are three prototypes for person, and the prototypes update based on the assigned features.
Fig. 2. Different situations of decision boundary: (a) ideal situation, (b) affected by correlation ambiguity, (c) affected by prior ambiguity.
the prototypes for each category and freeze them during training.
Consequently, CBP aligns with the pixel-level supervision signal, i.e.,
one-hot labels, which effectively alleviates the correlation ambiguity.
Furthermore, we equalize the 𝓁2 norm for each prototype to decouple
the prediction from the 𝓁2 norm of the corresponding prototype, which
is different from most of the existing works that simply normalize
the prototypes [7] to alleviate the prior ambiguity. As a result, the
semantic segmentation can be viewed as the EM algorithm where the
initialization of CBP can be viewed as the E-step, and the training can
be modeled as the M-step. However, only relying on the CBP may lead
to the relaxation of representations as the decrease in the depth of the
network. As a result, we propose the Online Centroid Contrastive Loss
(OCCL) module in light of some recent research [6]. OCCL comprises
two individual losses: centroid loss and category loss. We assume that
different objects belonging to the same category are data augmentation
from each other. Based on this assumption, in the former centroid loss,
the centroid loss separates the features belonging to the same categories
into two groups, serving as two views of one category. Then the view
centroids (VC) are produced by averaging the features in each view,
and the category centroids (CC) are the average of both views. The
InfoNCE loss [8] is then calculated among VC and CC to employ the
two VCs of the same category close and apart from other CCs. The latter
category loss aims to make each CC apart from other ones and close to
its corresponding CBP. As a result, inter-class centroids are apart while
intra-class representations are gathering.

Our contributions can be summarized as follows: (I) We propose
CBP, a new design of classifier, which converts the semantic segmenta-
tion to an implementation of the EM algorithm. (II) We approach OCCL
to better shape the feature space based on CBP. (III) Extensive exper-
iments are conducted on two semantic segmentation benchmarks, i.e.,
2

ADE20K [9] and COCO-Stuff [10]. Experimental results show that our
approach achieves promising results on both datasets and proves that
the CBP, i.e., frozen prototype, performs better than either learnable
prototypes or classifiers.

2. Related works

2.1. Semantic segmentation

As the first end-to-end semantic segmentation network, FCN [3]
applies the model which performs well in the image recognition task,
e.g., ResNet [1] as the backbone to extract features and proposes its
carefully designed encoder for dense prediction. Since it was proposed,
many great works focusing on the design of encoders have improved
the ability to extract strong features. For example, DeepLabV3 [11]
focuses on enlarging the receptive field, and [12] focuses on utilizing
the attention mechanism to extract more representative features. After
ViT [2] proves the potential of transformer in computer vision, the
transformer-based encoder for semantic segmentation has also been
facilitated, and many impressive works, e.g., Segformer [4], have been
proposed, and achieve state-of-the-art performance. Recently, with the
development of large-scale models, the design of the encoder has also
entered a new era. SAM [13] as one of the most representative works,
has learned a general notion of what objects are, resulting in a signifi-
cant impact on computer vision. However, SAM still suffers from a lack
of semantic information. To solve these issues, Semantic-SAM [14] are
proposed, respectively. Additionally, SAM has also been applied in 3D
vision tasks and achieves impressive performance, e.g., anything3d [15]
and SAM3D [16]. However, training such models needs lots of data and
proper fine-tuning.
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Though many works have been proposed for improving the ability
of encoders, the design of classifiers, i.e., 1 × 1 convolution layer,
remains unchanged for a long time. Recently, some works that apply
clustering methods, e.g., ProtoSeg, [5], and generative methods, e.g.,

MMSeg [17], have been approached, which can better handle the
tructure of the training data. However, these classifiers still suffer
rom correlation ambiguity and prior ambiguity problems. Though
everal works try to solve the prior ambiguity by normalizing the
rototypes [7], the prior ambiguity is still ignored. Despite some
orks, e.g., slimmable dataset [18], applying orthogonality as a reg-
larization term, i.e., forcing the cosine similarity between one feature
nd others to zero, e.g., DD [19], the prior ambiguity still exists. In
his paper, we tackle the prior ambiguity and correlation ambiguity
roblem together by designing an orthogonal classifier and take a
tep further to equalize the 𝓁2 norm of the prototypes rather than
imply normalizing. Meanwhile, the orthogonality is applied in the
nitialization of the classifier and is not utilized as a regularization term.
esides, our method can be seen as an assembly between a trainable

mage encoder and an unlearnable classifier. However, different from
raining with multi models, e.g., deep reassembly [20], deep graph
eprogramming [21], TAM [22], our model contains only one model
ather than multi-models. Different from some works that freeze the
mage encoder during training and train another module to classify
ovel categories, e.g., CWT [23], PCN [24], and UOTSL [25], our
ethod works in close datasets and freezes classifiers rather than image

ncoders.

.2. Contrastive learning

The core idea of contrastive learning is to build positive and neg-
tive pairs and enable the positive pairs closer and the negative pairs
part. By mining the mutual information between the positive pairs,
he network can learn robust features for vision tasks. Many works,
.g., MoCo [6], have been proposed based on this idea and have transfer
bility to downstream tasks. Some works only rely on the positive pairs,
.g., SimSiam [26].

Different from the instance discrimination tasks, the main challenge
f segmentation based on contrastive learning is to build positive and
egative pairs from dense pixels. The generation can be grouped into
nline-based methods [5] where the data is sampled from the mini-
atch and offline-based methods [7] where the data is sampled from a
arge memory bank. However, for online-based methods, the generation
f the positive pairs is non-stable suffering from the limited batch size.
ffline-based methods need lots of memory to store elaborately selected
egatives covering all classes. Recently, generative-based methods [17]
ave been proposed, their data is generated from a distribution but they
eed to fit a prior ambiguity distribution. In this paper, we propose
novel approach that provides stable prototypes without the need

or extra resources such as a memory bank or fitting an ambiguous
istribution. Our approach is different from existing works such as
AT [27], where randomly initialized vectors from noise distributions
re orthogonalized, and contrastive loss is utilized instead of MSE loss
or optimization. Additionally, our approach differs from [5] in that we
redefine the prototypes and freeze them during training.

. Methodology

In this section, we first illustrate the problems that the classifiers in
revalent segmentation models face: the ambiguity. To address the issue,
e predetermine mutually orthogonalized and frozen prototypes,
.e., Category-Basis Prototypes (CBP), to convert segmentation into an
mplementation of EM algorithm based on CBP. To better consider the
elationship of pixels, we propose Online Centroid Contrastive Loss
OCCL). OCCL compacts the features belonging to the same category
nd pushes them from other classes. This section is arranged as follows.
ection 3.1 introduces the research question to be resolved in this
3

b

aper. Section 3.2 introduces the category-basis prototypes. Section 3.3
pproaches the OCCL to better shape the feature space. Finally, we in-
roduce training objectives in Section 3.4. The overview of the proposed
ethod can be seen in Fig. 3.

.1. Problem formulation

Given a set of data  =
{

(𝑥𝑖, 𝑦𝑖)
}𝑀
𝑖=1 where 𝑥 and 𝑦 indicate the

mage and its corresponding label and 𝑀 denotes the size of the
ataset, the goal of semantic segmentation is to assign each pixel its
orresponding category. The prevalent design for a semantic segmenta-
ion network consists of an encoder 𝐸𝜃(.) to extract dense visual features
rom the input images, and a classifier 𝑔𝜙(.) to project the features to
he semantic space. The probability that a pixel 𝑖 is assigned to class 𝑙
s,

(𝑙|𝑖) =
exp(𝑔𝜙(𝑓𝑖)𝑇 ⋅𝑤𝑙)

∑

𝑛 exp(𝑔𝜙(𝑓𝑖)𝑇 ⋅𝑤𝑛)
, (1)

here 𝑝(𝑙|𝑖) ∈ [0, 1] indicates the probability that pixel 𝑖 is assigned to
lass 𝑙, 𝑓𝑖 ∈ 𝐅 is the feature of pixel 𝑖 where 𝐅 ∈ 𝐵∗𝐶∗𝐻∗𝑊 indicates the
eatures from 𝐸𝜃(.), 𝑛 ∈ 𝑁 denotes the number of categories. 𝐖∈ 𝑁∗𝐶

ndicates the prototypes for all 𝑁 categories, 𝑤𝑙 ∈ 𝐖 implies the 𝑙th
rototype from 𝐖. The inner product in Eq. (1) equals,

𝜙(𝑓𝑖)𝑇 ⋅𝑤𝑙 = ‖𝑔𝜙(𝑓𝑖)‖ ⋅ ‖𝑤𝑙‖ ⋅ cos (𝑔𝜙(𝑓𝑖), 𝑤𝑙), (2)

here ‖ ⋅ ‖ denotes the 𝓁2 norm of a vector and cos(⋅, ⋅) denotes the
osine similarity between two vectors. Eq. (2) implies that 𝑝(𝑙|𝑖) relates
o the 𝓁2 norm of the classifier’s weights, except for the cosine similarity
etween features and the weights of the classifier. We summarize
his problem as prior ambiguity. Meanwhile, we observe that the
lassifier’s weights for the categories with similar semantics always
ave positive similarities with each other. Though this fact aligns with
eople’s intuition, it violates the pixel-level supervision signal, i.e., one-
ot labels, which are orthogonal with each other, failing to preserve the
ositive similarities between similar categories. This problem is termed
orrelation ambiguity. These two problems impede the generalization
bility of the segmentation models, namely ambiguity, i.e., a pixel may
e misclassified to the classes which have similar semantic information
r the classes with more pixels in a dataset. Though research endeavors
ave made efforts in solving the prior ambiguity [7], the correla-
ion ambiguity which hinders the perception of correlation between
ategories with similar semantics is always ignored. Meanwhile, we
ake a step further to expand the simple normalization to equalization.
ifferently, we propose to solve the ambiguity by redesigning the
lassifier, i.e., CBP.

.2. Category-basis prototype

To address the ambiguity, we propose the category-basis prototype.
pecifically, suppose there are 𝑁 unique categories in a dataset. Before
he training process, We randomly initialize N vectors based on Kaim-
ng Initialization [28] 𝐖∈ 𝑁∗𝐶 where 𝐶 denotes the channel number.
hen we orthogonalize 𝐖 by the Gram–Schmidt algorithm and equalize
he 𝓁2 norm of the orthogonalized vectors. The overall initialization
rocess can be shown in Algorithm 1.

For the correlation ambiguity, as we freeze the category-basis pro-
otypes they are always orthogonalized with each other, which pre-
ents them from being similar to each other. For the prior ambiguity,
he 𝓁2 norm of each weight is equal, and the classification prob-
bility is decoupled from the 𝓁2 norm of both the representation
nd the prototypes, only depending on the cosine similarity with the
rototypes.

Besides, another benefit of applying category-basis prototypes is
hat the semantic segmentation is converted to a clustering problem
ased on frozen prototypes. More precisely, the initialization of CBP can

e viewed as the E-step in the EM algorithm [26] where the centers of
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Fig. 3. The illustration of the overall framework. The input images are first fed into an encoder to obtain dense features. Then, these features are cast to the space spanned by
the CBP. Finally, the pixel-level loss, i.e., cross-entropy, and OCCL is applied for optimizing.
Algorithm 1 The initialization of category-basis prototypes. We first
randomly initialize 𝑁 vectors from Kaiming initialization [28], where
𝑁 denotes the category number in a dataset, and the 𝓁2 norm of the
vectors 𝑇 .
1: Randomly initialize 𝐖∈ 𝑁∗𝐶 # Initialize the prototypes to be

orthogonalized.
2: 𝛽 = ∅, 𝛼 = ∅, 𝑇 # Initialize the temporal results and the 𝓁2 norm

value.
3: 𝛽.append(𝐖[1]), 𝛼.append(𝐖[2],𝐖[3]...𝐖[𝑁]) # Separate the 𝑊

and assign them to 𝛼 and 𝛽.
4: for each 𝑎𝑖 ∈ 𝛼 do
5: 𝑡𝑒𝑚𝑝 = 0 # Initialize a temporal result.
6: for each 𝑏𝑗 ∈ 𝛽 do

7: 𝑣 =
𝑎𝑇𝑖 ⋅𝑏𝑗
𝑏𝑇𝑗 ⋅𝑏𝑗

# Compute the weight for each 𝑏𝑗 .

8: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + 𝑣 ⋅ 𝑏𝑗 # Update the temporal result.
9: end for

10: 𝛽.append(𝛼𝑖 − 𝑡𝑒𝑚𝑝) # Add the temporal results to the list of 𝛽.
11: end for
12: 𝛽 = 𝛽⋅𝑇

√

𝛽𝑇 ⋅𝛽
# Equalize the 𝓁2 norm of the prototypes.

13: return 𝛽

each category are defined. However, the CBP is initialized without any
prior knowledge, e.g., language information [29], or any update,
e.g., gradient decent [3] or EMA [5]. The optimization of the network
can be seen as the M-step where each pixel is pulled together with the
corresponding centers. Different from the existing works, our method
provides a frozen center and extends normalization to equalization.
Moreover, CBP spans a linear space with the same dimension, i.e., 𝑁 ,
as the supervision signal.

3.3. Online centroid contrastive loss

After mitigating the correlation and prior ambiguity problem at the
pixel level, we further propose to measure the relationships among
pixels, e.g., intra-class compactness, to improve the segmentation per-
formance. To better shape the feature space, we approach Online
Centroid Contrastive Loss (OCCL). First, we define the View Centroid
(VC) 𝑣𝑙𝑖 as the average of the features belonging to 𝑙th category in the
𝑖th view. More precisely, given the features 𝐅 ∈ 𝐵∗𝐶∗𝐻∗𝑊 extracted
from 𝐸𝜃(.) and their label 𝑦, where 𝐵,𝐶,𝐻,𝑊 denote the batch size,
channel, height, and width of the features, respectively. We equally
divide 𝑦 into two parts and get 𝑦 and 𝑦 as two different views of 𝑦
4

1 2
where 𝑦0 contains the same number of categories as 𝑦 while the number
of objects is half. Then 𝑣𝑙𝑖 can be computed as,

𝑣𝑙𝑖 =
∑

𝐵,𝐻,𝑊 𝐅[1(𝑦𝑖 = 𝑙)]
∑

𝐵,𝐻,𝑊 [1(𝑦𝑖 = 𝑙)]
, (3)

where 1 implies whether the pixel belongs to the category 𝑙, and 𝑖 ∈
[1, 2] indicates the 𝑖th view. The OCCL consists of centroid loss and
category loss.

Centroid Loss. Motivated by the recent advance in contrastive
learning [6], we assume different objects in a mini-batch belonging
to the same category as a data augmentation from each other. During
training, we split the 𝑦 into 𝑦1 and 𝑦2. Then, given 𝐅 and 𝑦1, 𝑦2, the 𝑣𝑙1
and 𝑣𝑙2 are calculated by Eq. (3). Then the centroid for category 𝑠𝑙 is
obtained by averaging 𝑣𝑙1 and 𝑣𝑙2, namely Category Centroid (CC). The
contrastive loss driven by InfoNCE [8] can be calculated between VC
and CC,

𝑣(𝑣𝑙𝑥) = 𝛴𝑁
𝑖

exp(𝑣𝑇𝑖1 ⋅ 𝑣𝑖2∕𝜏)

𝛴𝑁
𝑗≠𝑖exp(𝑣

𝑇
𝑗𝑥 ⋅ 𝑆𝐺(𝑠𝑗 )∕𝜏) + exp(𝑣𝑇𝑖1 ⋅ 𝑣𝑖2∕𝜏)

, (4)

where 𝜏 is the hyper-parameter to scale the inner product among all
the centroids and 𝑆𝐺 is the stop gradient operation, 𝑁 indicates the
number of categories, and 𝑥 ∈ [1, 2] indicates the index of view.

Category Loss. Besides the centroid loss, we propose category loss
to make each category closer to its corresponding CBP. Given view
centroid 𝑣𝑙1 and 𝑤 ∈ 𝐖, the category loss is obtained by,

𝑐 (𝑣𝑙1) = 𝛴𝑁
𝑖

exp(𝑣𝑇𝑖1 ⋅𝑤𝑖∕𝜏)

𝛴𝑁
𝑗≠𝑖exp(𝑣

𝑇
𝑗1 ⋅𝑤𝑗∕𝜏) + exp(𝑣𝑇𝑖1 ⋅𝑤𝑖∕𝜏)

, (5)

The total loss function of OCCL is,

𝑜𝑐𝑐 (𝜆, 𝜙) =
𝜆 ∗ (𝑣(𝑣𝑙1) + 𝑣(𝑣𝑙2)) + 𝜙 ∗ (𝑐 (𝑣𝑙1) + 𝑐 (𝑣𝑙2))

2
, (6)

where 𝜆 and 𝜙 are two hyperparameters scaling the corresponding loss.
Relations to the previous paradigm. The contrastive loss can

be modeled as a matching problem between queries and keys [6].
For centroid loss, our method differs from the existing works in the
generation of queries and keys. The queries and keys are all generated
in an online manner, while the related work [30] obtains keys from
a large memory bank. Consequently, our method is simpler, easier to
implement, and more efficient.

For the category loss, similar to the random initialization strategy
in NAT [27], we also sample the prototypes randomly from a noise
distribution, but the orthogonal operation brings category-related in-
formation to the prototypes. In addition, the keys are all frozen, which
is different from the existing works that update them by either gradient
decent [31] or EMA [5].
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Table 1
Quantitative results on ADE20K and COCO-Stuff datasets.

ADE20K COCO-Stuff

Pub Head Backbone mIoU 𝛥 Pub Head BackBone mIoU 𝛥

ECCV18 DeepLabv3+ [11] RN101 [1] 44.1 – CVPR19 SVCNet [32] blue [1] 39.6 –
NeurIPS21 MaskFormer [33] blueRN101 [1] 46.0 – ECCV18 DANet [34] RN101 [1] 39.7 –
ECCV20 OCR [12] HRFormer-B [35] 48.7 – ICCV19 SpyGR [36] RN101 [1] 39.9 –
ICCV21 UPerNet [37] Swin-B [38] 48.0 – NeurIPS21 MaskFormer [33] RN101 [1] 39.8 –
CVPR22 ProtoSeg [5] Swin-B [38] 48.6 +0.6 CVPR22 ProtoSeg [5] Swin-B [38] 42.4 +0.9
NIPS22 GMMSeg [17] Swin-B [38] 49.0 +1.0 NIPS22 GMMSeg [17] Swin-B [38] 44.3 +0.7
ICLR23 DNC [39] Swin-B [38] 48.6 +0.6 ICLR23 DNC [39] Swin-B [38] – –

CVPR15 FCNa [3] RN101a [1] 39.9 +1.3 CVPR15 FCNa [3] RN101a [1] 32.5 +0.5FCN [3] + ours 41.2 FCN [3] + ours 33.0

CVPR22 UperNet [37]a
ConvNext-Ba [40] 48.9 +0.7 CVPR22 UperNeta [37] ConvNext-Ba [40] 43.6 +0.6UperNet [37] + ours 49.6 UperNeta [37] + ours 44.2

CVPR21 UperNeta [37] Swin-Ba [38] 47.8 +0.7 CVPR21 UperNeta [37] Swin-Ba [38] 41.5 +1.1UperNet [37] + ours 48.5 UperNet [37] + ours 42.6

NeurIPS21 Segformera [4] MiT-B5a [4] 48.9 +1.0 NeurIPS21 Segformera [4] MiT-B5a [4] 43.4 +1.5Segformer [4] + ours 49.9 Segformer [4] + ours 44.9

a Indicates reimplemented method. 𝛥 indicates the improvement compared with the baseline performance.
s
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3.4. Training objectives

Before training, we first initialize the category-basis prototypes
based on the algorithm in Section 3.2. Then we employ both the cross-
entropy at the pixel level and the OCCL at the centroid level. In a
nutshell, the total loss is

 = 𝑝(𝐸𝜃(𝑥)𝑇 ⋅𝑊 , 𝑦) + 𝑜𝑐𝑐 (𝜆, 𝜙), (7)

where  indicates the total loss, 𝑝 denotes the cross entropy loss at
pixel-level between the prediction and its ground truth 𝑦, 𝑜𝑐𝑐 (𝜆, 𝜙)
indicates the OCCL.

4. Experiments

4.1. Experiment setup

Dataset and Implementation Details. We demonstrate our results
on two semantic segmentation benchmarks: ADE20K [9] and COCO-
Stuff [10]. ADE20K is a large-scale scene parsing benchmark dataset
that covers 150 categories. The dataset contains a training dataset with
20K images, a validation dataset with 2K images, and a test dataset
with 3K images. COCO-Stuff contains 10K images including 9K training
images and 1K test images. There are 80 object categories, 91 stuff
categories, and 1 unlabeled.

Our codes are based on the MMsegmentation, following the default
settings for each dataset. Specifically, all the backbones are first pre-
trained on ImageNet1K and the rest layers are randomly initialized. The
augmentation techniques include random scale jittering with a factor
in [0.5, 2], random horizontal flipping, random cropping, and random
color jittering. For convolution models the optimizer is SGD and for
transformer-based models is AdamW. The learning rate is scheduled
following the polynomial annealing policy. In addition, the batch size
for both datasets is set to 16. The crop size is set to 512 pixels × 512
pixels. The models are trained for 160K and 80K iterations on ADE20K
and COCO-Stuff, respectively. 𝜏 is set to 0.07 and the length is set as 2
by default.

Evaluation. For both datasets, we rescale the short scale of the image
to train crop size while keeping the aspect ratio unchanged. Our model
is trained and tested on 8 V100 (32 GB) GPUs. We report the mean
intersection over union (mIoU) score for each model. Note that we do
not use tricks, e.g., multi-scale testing, test-time augmentation, in
5

inference.
Table 2
Resource consumption comparison and 𝛥 indicates the performance improvement
compared with the baseline performance.

Model Backbone Memory fps Params GFlops 𝛥

Swin [38] Base [38] 10079MB 23.4 120.0M 300.0 –
FCN [3] RN101 [1] 18439MB 28.8 66.2M 276.0 –

GMMSeg [17] MiT-B5 [4] 30513MB 10.2 84.9M 111.0 +0.6
Segformer + Ours 7021MB 19.5 82.1M 75.6 +1.0

Segformer MiT-B4 [4] 5969MB 24.1 61.4M 59.3 +0.5+Ours 6071MB 23.9 61.5M 59.6

ConvNext [40] Base [40] 5279MB 16.6 121.0M 293.0 +0.7+Ours 6021MB 16.5 121.0M 296.0

4.2. Comparison with state-of-the-art

ADE20K. Table 1 reports the results of representative segmentation
models on ADE20K dataset. For different models, we conduct extensive
experiments and choose the hyperparameter that can obtain the best
performance. In a specific, 𝜆 is set as 0.4 and the 𝜙 is set to 0.1
for FCN [3], 1, 0.2 for ConvNext [40], Swin Transformer [38], and
1, 0.1 for Segformer [4]. Besides, the length of the CBP is set as 1
for Swin-Transformer [38] and Segformer [4]. Our models gain the
expected improvements on both convolutional-based and transformer-
based models. In specific, for convolutional models, combining our
proposed CBP and OCCL outperforms the original baseline by a large
margin which is 1.3% and 0.7% mIoU for FCN and ConvNext, re-
pectively. For the transformer-based models, i.e., Swin-transformer
nd Segformer, applying our CBP and OCCL achieves significant im-
rovements of 0.7% and 1.0% mIoU than the baseline performance.
he qualitative results on the ADE20K dataset are shown in Fig. 7.
enefiting from the proposed CBP and OCCL, the model can outperform

ts corresponding baseline methods. Meanwhile, compared with the
OTA methods on the performance improvements, we can find that
nder the same backbone, i.e., SwinTransformer-Base [38], our meth-
ds can achieve similar improvements to ProtoSeg [5] and DNC [39],
nd a little bit lower improvement than GMMSeg [17]. However, our
ethods need fewer resources than GMMSeg.

We further analyze the consumption of computational resources
or the proposed methods as shown in Table 2. Note that in this
xperiment, we use one RTX A6000 GPU to report the performance.
ompared with the SOTA methods, e.g., GMMSeg [17], under the same
egformer-B5 backbone, our methods can achieve similar mIoU scores
n the ADE20K dataset while costing less 1

4 GPU memories (7 GB vs.
30 GB) during training. Besides, during testing, the proposed methods
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Fig. 4. Ablations on training objectives. 𝑋-axis shows the non-frozen parameter. When
freezing 𝜆, the 𝑥-axis implies 𝜙 and vice versa. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

an achieve over twice as fast inference speed (19.5 fps vs. 10.2 fps)
nd much fewer GFlops (75.6G vs. 111.0G) and number of parameters
82.1M vs. 84.9M). Meanwhile, we can achieve higher improvements
1.0 vs. 0.6) compared with GMMSeg [17]. Compared with the baseline
ethods, our methods can achieve exceptional improvements, e.g.,
.5% in mIoU using Segformer-B4 backbone with little increase of
esources.
COCO-Stuff10K. We also conduct experiments on the COCO-Stuff

ataset to demonstrate the effectiveness of our proposed CBP and
CCL as shown in Table 1. For different models, the hyperparameters
re different. In a specific, 𝜆 is set as 1 and the 𝜙 is set to 0.3
or FCN [3], ConvNext [40], Swin Transformer [38], and 1, 0.1 for
egformer [4]. Besides, the length of the CBP is set as 0.3 for FCN [3],
for ConvNext [40], and 1 for Segformer [4]. For convolutional-based
odels, compared with the basic models without our methods, the
erformance gain is 0.5% and 1.1% in FCN and ConvNext, respectively.
ur methods consistently outperform the baseline of transformer-based
odels. More precisely, CBP and OCCL bring performance gains of
.6% and 1.5% mIoU with Swin-transformer and Segformer models.
hen it comes to performance improvement, we can achieve even

igher performance gain than the SOTA methods, i.e., GMMSeg and
rotoSeg, which indicates the effectiveness of our methods.

.3. Ablation study

To investigate the effectiveness and rationality of our proposed CBP
nd OCCL, we use the Segformer-B0 model as the baseline and conduct
blation studies on the ADE20K [9] dataset. The model we use in this
ection is trained with 40K iterations. For the OCCL, the 𝜙 is set to 0.3,
as 1.0.
The effectiveness of the proposed modules. We first investigate

he effectiveness of the newly proposed methods, i.e., CBP and OCCL,
s shown in Table 3. We first ablate all the proposed modules to obtain
base model for evaluating the proposed modules. The baseline model

chieves 33.4% mIoU score and 44.4% mAcc scores. Then we only
ntroduce CBP to the baseline model, and we find that this model
chieves similar performance which is 33.5% in mIoU and 44.4% in
Acc. We think this is because CBP is discriminative enough as the or-

hogonality, which proves the effectiveness of the proposed CBP. Then
e validate the effectiveness of the OCCL, and we can observe that the
erformance gain is expected which is 0.9% in mIoU score and 1.4%
n mAcc. Finally, we combine the two proposed modules and achieve

performance gain by a large margin which is 1.7% in mIoU score
nd 3.3% in mAcc. The ablation studies above prove that both of the
roposed modules can bring merit to the semantic segmentation task.
e also visualize the similarity map of the weights in the classifier for

he baseline model, i.e.learned by gradient descent, and the proposed
nes, i.e., CBP. As there are 150 categories in ADE20K [9] dataset, we
nly randomly sample some categories as shown in Fig. 6.
6

Table 3
Ablation on the effect of CBP and OCCL.

CBP OCCL mIoU mAcc

– – 33.4 44.4
✓ – 33.5 44.4
– ✓ 34.3 45.8
✓ ✓ 35.1 48.1

Table 4
Ablation on update strategies of CBP.

Update mIoU mAcc

Frozen 35.1 48.1
Gradient 34.6 46.1
EMA 29.9 41.8
Penalty 34.4 45.9

Different update strategy for the category-basis prototype. In
Section 3.2, we argue that freezing the CBP during the training process
is a good choice as it matches the supervision signal. To investigate
whether freezing the CBP is an optimal way for the category-basis
prototype, we conduct experiments with different update strategies for
the category-basis prototype. We apply the same initialization, i.e.,
rthogonalization, and equalization at the beginning of training, and
he only difference among them is how to update the parameters in
he CBP. We set our frozen CBP as the baseline. As shown in Table 4,
e compare our frozen CBP with the updated CBP by gradient and

lustering. In this experiment, ‘‘EMA’’ means that the CBP is updated by
he EMA of CC. We can find that no matter whether the CBP is updated
ith the gradient-based or cluster-based method, the performance of
ill drop drastically, i.e., from 35.1% → 29.9% in mIoU and 48.1% →

1.8% in mAcc for clustering-based methods. The drop is from 35.1%
34.6% in mIoU and 48.1% → 46.1% in mAcc for the gradient-

ased method, which shows that the frozen prototypes are beneficial
or semantic segmentation as preserving the orthogonality. At the same
ime, we can further prove that a frozen discriminative initialization
s better than the learning paradigm. Besides, we further conduct an
xperiment where the CBP is learnable and always equalized (making
he 𝓁2 of prototypes the same) during training, and we add another
rthogonality loss with a weight of 0.01, i.e., forcing the cosine simi-
arity between one prototype and others to 0, same as [18] to penalize
he prototype. The result is shown in the row of ‘‘Penalty’’ in Table 4.
he mIoU is lower than both Frozen and Gradient ones. The reason
e think is that penalizing the classifier rather than the feature space

eads to a constrained classifier and confused feature space. In contrast,
BP is mutually orthogonalized vectors with the same nature as the
ne-hot label, i.e., supervision, and enables the feature space more

distinguished.
Training Objectives. We first investigate our training objectives,

i.e., Eq. (7). As 𝑜𝑐𝑐 consists of 𝑣 and 𝑐 , we ablate these two losses
respectively as shown in Fig. 4. To show the effect of both hyperparam-
eters in the same figure, the 𝑥-axis represents the variable that is not
frozen, e.g., if 𝜆 is fixed, the 𝑥-axis represents the change of 𝜙 and vice
versa. For 𝑣, we freeze the hyper-parameter of category contrastive
learning, i.e., 𝜙, as 0.3, and investigate the effectiveness of centroid
contrastive learning as shown in the orange line. Without the centroid
loss, the performance drops at most 0.3%, indicating the significance of
centroid loss. Meanwhile, the scale of the centroid contrastive learning
should also be carefully considered as the performance ranges from
35.4% to 35.1% which is a large gap. Then we freeze the centroid
loss and examine whether the category loss contributes to the model as
shown in the blue line. In Fig. 4, the performance of the segmentation
model benefits a lot from the category loss as the performance gap
between best and worst (without category loss) performance is near
1%. Without category loss, the performance drops from 35.1% to

34.2%.
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Table 5
Ablation on initialization of CBP.

Equal Ortho mIoU mAcc

✓ ✓ 35.1 48.1
– ✓ 33.3 44.6
✓ – 35.0 47.8
✓ CLIP 33.2 45.2
✓ Masked 30.3 41.7
✓ Masked + ✓ 35.1 48.0

Table 6
Ablation study on orthogonalization.

Initialization Categories Sum_IoU

Equal+Ortho bike+minibike 92.3
Equal 92.0 (↓ 0.3)

Equal+Ortho stairs+stairways 53.8
Equal 52.8 (↓ 1.0)

Equal+Ortho oven+microwave 37.4
Equal 36.1 (↓ 1.3)

Table 7
Ablation study on equalization.

Initialization Category Amounts mIoU

Ortho+Equal flag 105460 24.3
Ortho 17.0 (↓ 7.3)

Ortho+Equal radiator 20652 28.9
Ortho 23.6 (↓ 5.3)

Ortho+Equal wall 39565000 68.4
Equal 68.4

Different initialization of the category-basis prototype. To ex-
lore whether the prior ambiguity and correlation ambiguity problem
an be mitigated, we yield an ablation experiment to validate the
ffectiveness of equalization and orthogonalization shown in Table 5
here Equal denotes whether equalization is applied and ortho in-
icates whether the orthogonalization is applied. By default, we set
pplying both orthogonalization and equalization to initialize the CBP
s a performance baseline. Then we ablate equalization and orthogonal-
zation respectively. The baseline can achieve the best performance in
IoU score and mAcc, i.e., 35.1% and 48.1% at the same time. When

emoving equalization, the performance drops drastically to 33.3% and
4.6%. If the orthogonalization is ablated, though the mIoU score does
ot change drastically, i.e.from 35.1% to 35.0%, the mAcc drops to
7.8%. Moreover, instead of applying the orthogonality, we initialize
he CBP with the text features produced by the CLIP [29] ViT [2]
ext encoder. Compared with the CBP, there is a large performance
rop in both mIoU and mAcc scores, i.e., from 35.1% to 33.2% in
IoU and 48.1% to 45.2% in mAcc. The experiments above imply that

oth initialization, i.e., orthogonality and equalization, contribute to
he higher performance of our methods. Even the features obtained
rom foundation models, e.g., CLIP, may not be proper for the semantic
egmentation tasks. Moreover, we use the pretrained backbone of
egformer-B0 to extract category-level features as prototypes. Note that
hese prototypes are also fixed during training. As can be seen from the
econd last row of Table 5, performance reaches its worst, i.e., 30.3%
n mIoU and 41.7% in mAcc. However, when we orthogonalize them,
he performance is very close to the one with CBP, indicating that the
rthogonality rather than the initialization has a larger impact on the
erformance.

Besides, to further investigate if the correlation ambiguity and prior
mbiguity are mitigated, we conducted another two experiments. In the
irst experiment to validate the correlation ambiguity, we randomly
elect two categories with similar semantic categories, e.g., sofa and
hair, and compute their sum mIoU score so that we can test whether
orrelation ambiguity is mitigated. As shown in Table 6, we can ob-
erve that without the orthogonalization, the sum mIoU score will drop
7

Fig. 5. Quantification of prior ambiguity.

Table 8
Quantification on the correlation ambiguity.

Initialization CS ↓ mIoU (%) ↑

Equal+Ortho 0 35.1
Equal 6.2 35.0
Learnable 75.8 34.6
Penalty 73.2 34.4

in different scales. For instance, for bike and minibike, the performance
drops 0.3%, and for stairs and stairways, it drops 1.0%. Moreover,
to quantify the class separability and the prior ambiguity, we apply
the confusion matrix to describe the prediction of each pixel and the
equations to show class separability and prior ambiguity,

𝐶𝑆 = 0.5 ∗
𝑁
∑

𝑖

𝑁
∑

𝑗≠𝑖

𝑤𝑇
𝑖 ⋅𝑤𝑗

‖𝑤𝑖‖ ∗ ‖𝑤𝑗‖
, (8)

where 𝐶𝑆 is the class separability 𝑤 ∈ 𝐖 means the prototypes for clas-
sification. A large 𝐶𝑆 indicates a positive correlation and little distance
between the prototypes, i.e., large class separability. The results are
shown in Table 8. With both normalization and the orthogonality, the
𝐶𝑆 and the mIoU achieve their peak, i.e., 0 and 35.1%. When removing
the orthogonality (‘‘Equal’’), the class separability and the mIoU drop
to 6.2 and 35.0%. If the prototype is learnable (‘‘Learnable’’), the class
separability decreases drastically to 75.8 and 34.6%. For the ‘‘Penalty’’,
as the classifier is constrained, though the 𝐶𝑆 is lower, mIoU is also
lower than ‘‘Learnable’’.

To investigate if the prior ambiguity can be tackled by our methods,
we conducted another experiment. We select several categories with
large and small amounts of pixels, i.e., flag, radiator, and wall, in the
ADE20K dataset. We can observe from Table 7 that without equaliza-
tion, the performance of the categories with fewer pixels may descend
by a large margin. For instance, the flag obtains a large performance
drop, i.e., 7.3%, and the radiator 5.3%. By contrast, the wall that main-
tains the pixels 100+ times larger than the previous two categories does
not change. This experiment proves the effectiveness of our proposed
methods. Moreover, note that the relation factor between the number
of pixels in the training dataset and the 𝓁2 norm of the learnable
prototypes have a positive relation factor, i.e., 0.27, the prior ambiguity
always happens in the categories with fewer pixels. To further evaluate
if the prior ambiguity is mitigated, we compute the F1 score of all
the categories and rearrange the F1 scores by the pixel numbers in
the training dataset. Finally, we split and average the rearranged F1
scores into 15 groups, i.e., each bar represents the average F1 scores of
10 categories. The results are shown in Fig. 5. For the categories with
few pixels in the training dataset, our method can obtain better results
than both the no normalization methods and the learnable methods.

For instance, in the first group, our method achieves the average F1
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Fig. 6. The similarity map among the weights of the classifier trained on the ADE20K dataset of (a) the baseline model and (b) the proposed methods.
Fig. 7. Visualization of Segformer-B0 baseline and our methods on ADE20K dataset.
Table 9
Experiments on different lengths.

Model Length mIoU mAcc

Segformer-B0

1 34.6 47.6
2 35.1 48.1
3 35.3 48.3
4 35.3 48.2
5 35.1 48.1

score of 32.0%, which is 7.7% and 2.5% larger than no equalization
and learnable methods. The positive correlation between the 𝓁2 norm
and the number of training pixels, i.e., the more pixels the larger 𝓁2,
makes the network prone to the category with more training pixels
and vice versa (‘‘No equalization’’, ‘‘Learnable’’) as shown in Fig. 5.
After unifying the 𝓁2 norm (Ours), the network will focus more on the
categories with fewer pixels and mitigate the prior ambiguity.

We also conduct experiments to find the relationship between the
performance and the length, i.e., 𝓁2 norm, of the proposed CBP as
shown in Table 9. We change the length of the CBP from 1 to 5, and
8

the mIoU scores range from 34.6% to 35.3%, and the mAcc ranges from
47.6% to 48.2%. From these experiments, we can find that the length
of the CBP is a very sensitive hyperparameter that needs careful design.
Besides, we also tested the stabilization of the proposed methods under
4 different random seeds as shown in 10. From the table, we can find
that our methods can achieve similar performance in both mIoU and
mAcc scores.

Meanwhile, we visualize the similarity maps of our CBP and the
learned classifier. We randomly sample some results from the similarity
map as shown in Fig. 6(a). The weight of the normal classifier, i.e.,
optimized by gradient, obtains similar positive similarity among most
of the categories, especially for the categories with similar semantics,
e.g., oven and microwave. In CBP, however, the similarities between
each category turn to 0 as shown in Fig. 6(b), which indicates that the
category-basis prototype can solve the problem.

5. Conclusion

In this paper, we propose Category-Basis Prototypes (CBP), a group
of frozen, mutually orthogonalized vectors with equal 𝓁 norm to
2
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Table 10
Experiments on different seeds.

Model Seed mIoU mAcc

Segformer-B0

0 35.1 48.1
1 34.9 47.7
2 35.2 48.3
3 34.8 47.7
mean 35.0 ± 0.2 48.0 ± 0.3

solve the ambiguity problem that the prevalent semantic segmentation
etworks face in the learning of classifier. Moreover, CBP converts
he semantic segmentation to an implementation of the EM algorithm
here the initialization of CBP can be viewed as the E-step, and the
ptimization of the segmentation model is seen as the M-step. To better
hape the feature shape, we approach Online Centroid Contrastive
oss (OCCL). Specifically, the OCCL consists of two individual losses:
entroid loss and category loss. Our experiments show that our methods
chieve the expected performance improvements with minimal modi-
ication and prove that the CBP, i.e., frozen prototype, performs better
han either learnable prototypes or classifiers.
Limitations and Broader Impact. However, there are still lots of

imitations in our work. First, several works have shown that multiple
rototypes may facilitate the performance of the segmentation model,
.g., ProtoSeg, [5]. Unfortunately, as our CBP is initialized in a novel
anner, it is hard to predetermine several groups of prototypes for

ne category. Second, our methods rely heavily on the number of
imensions in the output features. In specific, if the output dimension is
ess than the number of categories, our initialization cannot guarantee
utual orthogonality among all prototypes, leading to a violation of

ur assumptions.
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