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Fig. 1: In the original image, the green arrow indicates the driving action is
available, the red arrow indicates that it is not. The heatmap indicates the
importance of each pixel in the prediction. Our approach could help E2EDMs
better focus on semantically meaningful visual features than baseline.

Abstract. In autonomous driving, visual features play a crucial role.
End-to-end driving models (E2EDMs) extract numerous visual features
from the driving environment to solve driving tasks. However, these vi-
sual features are often difficult for humans to understand, leading to
explainability issues. This study aims to improve the explainability of
E2EDMs by enhancing their ability to extract semantically meaningful
and driving-related visual features, like vehicles, pedestrians, and traffic
signals. The training process of E2EDMs involves leveraging a backbone
that is pre-trained on large datasets and subsequently fine-tuned for driv-
ing tasks. To address the explainability issue of E2EDMs, previous stud-
ies have designed complex E2EDMs during the fine-tuning stage. In this
paper, we enhance the explainability by improving the backbone’s abil-
ity to recognize driving-related features, i.e., object features. We propose
CROp-based COntrastive DIscriminative LEarning (CROCODILE),
an additional pre-training method for the backbone. CROCODILE im-
proves the backbone’s ability to preserve driving-related features while
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Fig. 2: The comparison of the previous approach and our approach, the previous
approach enhances explainability during the fine-tuning stage. On the other
hand, we enhance explainability in an additional pre-training stage.

suppressing irrelevant features. Then, during fine-tuning, only driving-
related features will be used for driving action prediction, thereby achiev-
ing high explainability. In addition, CROCODILE eliminates the need
for complex structures in the fine-tuning stage.

1 Introduction

End-to-end driving models (E2EDMs) are the most popular autonomous driving
models, they automatically extract and select visual features directly from the
driving environment. These models are capable of learning optimal visual fea-
tures tailored to specific driving tasks, resulting in higher prediction accuracy.
However, these extracted visual features are difficult for humans to understand,
leading to explainability challenges. This study aims to improve the explainabil-
ity of E2EDMs by enhancing their ability to extract more semantically mean-
ingful and driving-related visual features, making the decision-making process
more transparent and understandable.

Explanation methods are used to generate explanations for E2EDMs [6, 15,
2]. There are textual-based [1, 22, 11] and visual-based explanation methods [26,
17, 21], the former generates natural language to explain why the driving models
perform a specific driving action, and the latter uses visual information, i.e.,
images to offer intuitive explanations. Visual-based explanations are particularly
advantageous in telling what and where are the responsible features for the
driving action, thus in this paper, we focus on visual-based explanations. Among
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various visual-based explanation methods, attribution-based methods [6, 28, 2]
are most prevalent, they calculate the importance score of each input element
in the model’s prediction. As shown in Fig. 1, since the basis of the human
recognition system lies in objects, the heatmap that highlights driving-related
object features is more persuasive.

Like many downstream tasks, the training of E2EDMs is also based on fine-
tuning a pre-trained backbone [20, 16, 3]. The purpose of pre-training the back-
bone is to prepare a feature extractor capable of processing images of the driving
environment. Therefore, during the fine-tuning stage, the E2EDMs could use
the extracted features to predict driving actions. In other words, the features
extracted by the backbone have a significant impact on the prediction method
of the E2EDMs, i.e., the explainability of E2EDMs.

As shown in Fig. 2a, previous studies focused on enhancing explainability dur-
ing the fine-tuning stage of E2EDMs. Specifically, they added an object detection
module after the backbone, which required the E2EDMs to use object informa-
tion for driving action prediction, thereby enhancing explainability. However,
such a side task requires significant modifications to the architecture, deviating
from their inherent end-to-end nature. Additionally, this side task demands aux-
iliary data, specifically, labels for object information. This requirement imposes
stricter demands on the datasets in fine-tuning, as they must include not only
labels for driving actions but also for object information [21, 25, 12].

To address this, we take a different path. As a visual feature extractor, the
backbone plays a crucial role in the explainability of E2EDMs. Therefore, we
improve explainability by enhancing the backbone’s ability to process visual
features through an additional pre-training stage. As shown in Fig. 2b, between
the original pre-training stage and the fine-tuning stage, we introduce CROp-
based COntrastive DIscriminative LEarning (CROCODILE), CROCODILE
pre-trains the backbone to preserve the driving-related features and suppress the
irrelevant features. During fine-tuning, only driving-related features will be used
for driving action prediction (as shown in Fig. 1), achieving high explainability.

The contributions of this paper are:

– The novelty of this paper lies in shifting the focus of enhancing the explain-
ability of E2EDMs from the fine-tuning stage to the pre-training stage, which
allows us to maintain the simplicity of the E2EDMs.

– CROCODILE decouples the simultaneous requirements for object and driv-
ing information. Specifically, we first enhance explainability on a dataset con-
taining object information, then fine-tune driving tasks on another dataset.

– Our experiments demonstrate that CROCODILE is effective across different
backbones and E2EDMs, then analyze this effectiveness in ablation study.

2 Related Work

2.1 Contrastive learning methods

Contrastive learning methods utilize positive and negative sample pairs to train
the backbones [19, 14, 4]. He et al. [7] introduced a dynamic dictionary and a
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Fig. 3: Inside the global feature, we could locate the local feature corresponding
to the driving-related object (green box). This important local feature should
not be compromised by the unimportant background features (red box).

momentum-updated encoder to train the backbones to learn representations for
image classification tasks. In object detection, contrastive learning also plays a
crucial role. Zhang et al. [27] introduced Contrastive DeNoising Training, which
aids the model in distinguishing between relevant objects and irrelevant back-
ground information, thereby stabilizing training and accelerating convergence.

Although contrastive learning methods have been successfully employed to
enhance predictive accuracy in their respective tasks, their application in im-
proving explainability has been limited. We believe contrastive learning methods
can significantly improve explainability by guiding the discrimination between
driving-related features and those that are not. Therefore, we deviate from tra-
ditional uses of contrastive learning and focus on enhancing explainability.

2.2 Approaches for enhancing the explainability of E2EDMs

Leveraging object information to enhance the explainability of E2EDMs has be-
come a mainstream approach in the field. For instance, Wang et al. [17] utilized
object features to predict driving actions. Xu et al. [21] developed a multi-task
model that incorporates object labels, while Zhang et al. [25] introduced an
Objectification Branch (OB) into E2EDMs to improve explainability. However,
these approaches complicate the fine-tuning process and compromise the end-to-
end architecture since they require E2EDMs to solve the object detection and
driving tasks simultaneously. Moreover, these approaches impose strict require-
ments on datasets, demanding that each driving scenario include both object
and driving information, which forces researchers to propose additional datasets
to meet the requirements, limiting the practical applications [12, 21, 25].

To address this problem, we propose a novel method to enhance the explain-
ability of E2EDMs. We separate the enhancement of explainability from the
fine-tuning stage, eliminating the need for object detection structures.

3 Proposed Approach

3.1 Basic Idea behind our approach

If the backbone can only extract driving-related features and ignore irrelevant
features, then during the fine-tuning stage of E2EDMs, only driving-related fea-
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Fig. 4: The overview of CROCODILE. In the training process, there are two
kinds of crops: pre-backbone crop and post-backbone crop. The pre-backbone
crop cuts the driving-related object Îi out of the input image I, and then pro-
cesses Îi with the backbone θk, obtaining pure driving-related object features
F̂i. The post-backbone crop cuts the global feature F , which is obtained by pro-
cessing the input image with the backbone θq. From F , the post-backbone crop
cuts out F+

i and F−
i . We consider F+

i and F̂i as positive pairs, F−
i and F̂i are

negative pairs. After training, the backbone θq is used for future fine-tuning.

tures will be used for driving action prediction, thereby achieving high explain-
ability. Therefore, in this paper, we propose CROCODILE to further pre-train
the backbone to endow it with this capability. Existing pre-trained backbones
could process object features in images. Therefore, in this paper, we focus on
further enhancing the backbone’s ability to preserve driving-related object fea-
tures and suppress irrelevant features. As shown in Fig. 2b, our approach further
trains the pre-trained backbones [5], rather than training from scratch.

During the additional pre-training process for explainability, CROCODILE
ensures that the driving-related object features are not compromised by the ir-
relevant features. For example, in the global image shown in Fig. 3, an object
is located within a green box. After the backbone processes this global image,
we obtain a global feature. Within this global feature, the local features cor-
responding to the object should still represent the specific object (green box),
rather than being mixed with features from the surrounding environment (red
box). This capability is fundamental for using the driving-related object features
for driving tasks and is a prerequisite for the E2EDM’s explainability.

3.2 Crop-based Contrastive Discriminative Learning

To study how the driving-related object feature is affected by the driving environ-
ment during the backbone’s transformation, we perform two crops: pre-backbone
crop and post-backbone crop. As shown in Fig. 4, the pre-backbone crop hap-
pens before the backbone’s transformation, resulting in a pure object feature that
contains no environmental information. On the other hand, the post-backbone
crop happens after the backbone’s transformation, resulting in an impure object
feature that inevitably includes environmental information. Overall, these two
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types of crops result in a pure object feature and an impure object feature, we
use contrastive discriminative learning to eliminate the difference between these
two features by denoting them as the positive pair, thereby enhancing the back-
bone’s ability to preserve the features of the driving-related objects from being
mixed with the environmental features.

For each driving scenario, we prepare an image with the bounding box infor-
mation of the driving-related object. In this paper, we describe a bounding box
using the coordinates of its center point, width, and height. As shown in Fig. 4,
we crop the red car from the input image as

Îi = I(xi, yi, wi, hi), (1)

where I is the input image, Îi is the i-th object image cropped (pre-backbone)
from I. We use the coordinates of the object bounding box center point (xi, yi),
along with width wi and height hi to crop Îi from I.

We then resize Îi to match the size of I. Then, I and Îi are processed by
backbones θq and θk respectively, as

F = θq(I), F̂i = θk(Îi), (2)

this process yields F representing the entire driving environment and F̂i repre-
senting the pure 2D object feature that is most related to driving tasks.

Within F , we locate F+
i , the impure 2D object feature that is most related

to driving tasks. We calculate the bounding box information of F+
i as

αx =
W̃

W
,αy =

H̃

H
(3)

F+
i = F(αxxi, αyyi, αxwi, αyhi), (4)

where W and H are the width and height of the input image, W̃ and H̃ are the
width and height of the feature map. F+

i is cropped (post-backbone) from F .
Similar to general contrastive discriminative learning [7, 4, 27], our approach

involves positive and negative samples. We consider F+
i and F̂i as a positive

sample pair to guide the backbone to preserve the features of the driving-related
object. On the other hand, to ensure that the driving-related object features are
not compromised by environmental features, we design negative samples to teach
the backbone to distinguish between F̂i and the surrounding mixed feature. We
define F−

i , the 2D surrounding mixed feature, by keeping the size of bounding
box unchanged while randomly deviating the center point of the F+

i as

F−
i = F(αxxi ± ϵ ∗ αxwi, αyyi ± ϵ ∗ αyhi, αxwi, αyhi). ϵ ∈ [0.25, 0.5] (5)

We apply global average pooling (GAP) to F̂i, F+
i , and F−

i to obtain corre-
sponding vectors: V̂i, V +

i , and V −
i . We use these vectors to calculate the cosine

similarity of the positive pair and negative pair, and then define the loss as

L = 2 + S−
i − S+

i = 2 +
V −
i · V̂i

∥V −
i ∥∥V̂i∥

− V +
i · V̂i

∥V +
i ∥∥V̂i∥

, (6)
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Fig. 5: A typical scene in the dataset.

where S+
i , S−

i are the cosine similarities for the positive and negative pairs. The
range of L is 0 ∼ 2. As a positive pair, V +

i should be close to V̂i; as a negative
pair, the V −

i should diverge from V̂i. Therefore, as the learning target of positive
and negative pairs, F̂i has to be stable to facilitate training and convergence.
To achieve this, we adopt a momentum update method [7] where backbone θq
is normally trained by back-propagation, while backbone θk learns from θq as

θk ← mθk + (1−m)θq, (7)

where the momentum coefficient m is set to 0.999.

4 Experiments

4.1 Dataset

In this paper, we use two driving scene datasets. The first kind contains object in-
formation labels, which are used to train the backbones with CROCODILE. The
second kind contains driving action labels, which are used to fine-tune E2EDMs.

Additionally pre-train the backbone: In the BDD-100K dataset [23], there
is a collection gathered for object-tracking tasks. It comprises videos shot from
a driver’s perspective, each frame is annotated with the location of every object
within the scene. The collection provides approximately 200K images.

Fine-tune the E2EDMs: In the BDD-3AA (3 Available Actions) [26] dataset,
which annotates each scenario with the availabilities of three driving actions:
acceleration, left steering, and right steering. The BDD-3AA dataset considers
the driving task as a multi-label classification problem. The BDD-3AA dataset
comprises 500 video clips. When presented with successive images capturing the
driving surroundings, the objective of the E2EDMs is to determine the avail-
abilities for these three driving actions. For example, in a typical scene depicted
in Fig. 5, the ground truth is represented as A = [1, 1, 0]T , where 1 signifies an
available action and 0 is an unavailable one. We utilized the macro F1 score to
evaluate prediction accuracy as

Macro F1 =
F1(Âa, Aa) + F1(Âl, Al) + F1(Âr, Ar)

3
, (8)

where Aa, Al, Ar are the acceleration, steering left, and steering right actions,
the A and Â denote the ground truth label and the prediction result.
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8 C. Zhang et al.

4.2 The Subjective Persuasibility Evaluation Method

As the persuasibility evaluation method for explanations proposed in [25], we
gathered 5 participants who possess driver’s licenses and assessed their satisfac-
tion level with the explanations. We show the heatmaps to participants, each
heatmap is evaluated by 5 participants. Participants rate each heatmap from 1
to 5, with 1 being low persuasibility and 5 being high persuasibility, and then
we calculate the average value as the final score for this heatmap.

4.3 The Objective Persuasibility evaluation method

The objectification degree OD [24] represents the extent to which driving-related
objects are utilized in the explanations. Given that the human recognition system
relies on objects, the objectification degree determines the persuasibility of the
explanation. Without using humans as participants, this method objectively
evaluates the explanations generated by E2EDMs as

OD =

∑
p∈Oall

Imp(p)∑
p Imp(p)

, (9)

where Imp(p) represents the importance score of a pixel in the explanations,
Oall is the mask of all objects’ areas.

∑
p∈Oall

Imp(p) represents the summation
of all pixels’ importance scores inside the object area,

∑
p Imp(p) represents the

summation of all pixels’ importance scores. The OD represents the proportion
of the object’s features among all the features important for driving actions.

4.4 Implementation details

In the driving scenario, the biggest object is typically closest to the ego vehicle
and thus has a significant impact on driving decisions. Therefore, we consider
the biggest object in the images as the most driving-related object, and the
training of CROCODILE is focused on this biggest object. The bounding box
information for all objects, including the largest object, is annotated.

In this paper, the backbones in E2EDMs are pre-trained. As shown in Fig.
2b, there are two training approaches for these backbones. In the previous ap-
proaches, the backbones are pre-trained on ImageNet [5]. On the other hand,
in our approach, the backbones pre-trained on ImageNet will be further pre-
trained with CROCODILE. Then, the E2EDMs utilize the trained backbones
and undergo overall fine-tuning on the BDD-3AA dataset [26]. We apply 5-fold
cross-validation to train each E2EDM for 50 epochs and evaluate the average
accuracy on corresponding test datasets. As shown in Fig. 2b, there are also
two fine-tuning approaches for E2EDMs. In the previous studies [21, 25, 12], the
E2EDMs are fine-tuned with the driving action labels and the object info labels.
On the other hand, in our approach, the E2EDMs are fine-tuned with only the
driving action labels. For the training of backbones and E2EDMs, the Adam
optimizer is utilized with a weight decay of 1×10−4 and a learning rate of 0.001.
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Table 1: All methods and their configurations in Section 5.1. The names have
a certain pattern: a − b − c − d, a is the backbone trained status, and it could
be Ours (additionally pre-trained by CROCODILE), FRCNN (additionally
pre-trained by Faster RCNN), or omitted (no additional pre-training); b is the
backbone name; c is the E2EDM name; d is whether there is an objectification
branch (OB) during fine-tuning, and it could be O (OB) or omitted (no OB).

Method Backbone E2EDM OB [25] CROCODILE
R18-CBAM

ResNet18[8]R18-CBAM-O ✓

Ours-R18-CBAM ✓

R101-CBAM

ResNet101[8] CBAM [18]R101-CBAM-O ✓

FRCNN-R101-CBAM
Ours-R101-CBAM ✓

D-CBAM
DenseNet201[9]D-CBAM-O ✓

Ours-D-CBAM ✓

Based on previous research [26], explanations for the E2EDMs’ should based
on the high-level features used to predict the driving action. Therefore, all
E2EDMs in this paper are integrated with an attention mechanism [13, 18, 10]
applied to these high-level features, allowing us to generate faithful explanations
by overlaying the attention mask on the input images.

5 Experimental Results and Discussion

To verify the effectiveness of CROCODILE across different backbones and E2E-
DMs, we conducted two sets of experiments, comparing each with the corre-
sponding baselines. In the first set of experiments, we train multiple backbones
using the CROCODILE and then fine-tune the same E2EDM to present the
effectiveness of CROCODILE on various backbones. Based on the first set of
experiments, we identify the backbone on which CROCODILE performs best.
In the second set of experiments, we fine-tune various E2EDMs on this backbone
to present the effectiveness of CROCODILE on various E2EDMs. Furthermore,
we present a detailed ablation study to analyze the source of the effectiveness.

Most results are averaged over five runs to minimize the randomness of our
experimental results. For instance, each backbone trained with CROCODILE is
trained five times, and an E2EDM is fine-tuned on each backbone. The average
accuracy and explainability of the five E2EDMs are then presented as the final
result. However, due to the high cost of some experiments, we fine-tuned the
E2EDM on only one backbone, and we will explicitly mention such cases.
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Fig. 6: CROCODILE and baseline across backbones and E2EDMs.

5.1 The effectiveness of CROCODILE across different backbones

For the baseline, ZHANG et al. [25] proposed the Objectification Branch (OB),
which uses object information during fine-tuning to enhance the explainability of
E2EDMs. Since their E2EDMs used the Convolutional Block Attention Mecha-
nism [18], we refer to their two E2EDMs as CBAM and CBAM-O, the CBAM-O
has OB and CBAM does not.

We train a backbone with CROCODILE for 200 epochs, saving the backbone
every 25 epochs, resulting in eight backbones with different levels of training.
Then, we fine-tune the CBAM based on this series, resulting in 8 E2EDMs.
To demonstrate the effectiveness of CROCODILE across different backbones, as
shown in Table 1, we train 3 series of E2EDMs and their corresponding baselines.
In addition, we add another baseline for Ours-R101-CBAM. Since CROCODILE
enhances the explainability of the E2EDM by enabling the backbone to preserve
important object features, we further prove the effectiveness of CROCODILE by
comparing it with a traditional object detection task. In Ours-R101-CBAM, we
replace CROCODILE with an object detection task. Specifically, after obtaining
the backbone pre-trained on ImageNet, the backbone is trained on the BDD-
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Table 2: The subjective persuasibility of explanations.

Method R101-CBAM R101-CBAM-O Ours-R101-CBAM
Subjective persuasibility 2.48 2.70 3.44

Table 3: All methods and their configurations in Section 5.2. Compared to Table
1, the backbone is ResNet18, and we present more E2EDMs by replacing CBAM
[18] with ABN [13] and CCnet [10]. In addition, to investigate the impact on
explainability when combining CROCODILE with the baseline [25], we train 3
series of E2EDMs, e.g., for Ours-R18-CBAM, there is Ours-R18-CBAM-O.

Method Backbone E2EDM OB [25] CROCODILE
R18-CBAM

CBAM [18]R18-CBAM-O ✓

Ours-R18-CBAM

ResNet18 [8]

✓

Ours-R18-CBAM-O ✓ ✓

R18-CCnet

CCnet [10]R18-CCnet-O ✓

Ours-R18-CCnet ✓

Ours-R18-CCnet-O ✓ ✓

R18-ABN

ABN [13]R18-ABN-O ✓

Ours-R18-ABN ✓

Ours-R18-ABN-O ✓ ✓

100K dataset for object detection using Faster RCNN. Then, we fine-tune the
CBAM based on this backbone and refer to it as FRCNN-R101-CBAM.

As shown in Fig. 6a, we present the objective evaluation of the explainability
of the aforementioned E2EDMs. The horizontal axis represents training dura-
tion, and the vertical axis represents the OD of each E2EDM, which indicates
how much object feature information the E2EDM uses to make driving action
predictions. Since the human cognitive system is object-based, a higher OD in-
dicates higher explainability. Based on the performance of CROCODILE on 3
backbones, we could see that for any backbone, as the training duration in-
creases, the explainability of the E2EDM gradually improves and outperforms
all baselines. To further prove the effectiveness of CROCODILE, we evaluated
the human subjective persuasibility of the explanations from Ours-R101-CBAM
(200-th epoch), R101-CBAM, and R101-CBAM-O. Due to the high cost of this
experiment, these E2EDMs are trained only once. As shown in Table 2, the
explanations generated by Ours-R101-CBAM are easier to understand.

In addition, we can see that Ours-R101-CBAM consistently outperforms
those of FRCNN-R101-CBAM. This indicates that the object detection task
cannot replace CROCODILE in enhancing the explainability of the E2EDMs.
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Table 4: Summary of all methods and their configurations in Section 5.3, there
are three components in CROCODILE, DRF, CP, and Negative. For DRF, the
BO represents the Biggest Object, RO represents the Random Object, and RC
represents the Random Crop. For CP, the Crop represents using the original
pre-backbone and post-backbone crops to make positive and negative pairs, the
CDN represents using the CDN in [27] to make positive and negative pairs. For
Negative, the check mark and the cross mark represent whether we consider the
similarity of negative pairs in Eq. 6.

Methods Backbone E2EDM
CROCODILE components
DRF CP NegativeBO RO RC Crop CDN

Ours-R18-CCnet

ResNet18 [8] CCnet [10]

✓ ✓ ✓

RO-R18-CCnet ✓ ✓ ✓

RC-R18-CCnet ✓ ✓ ✓

CDN-R18-CCnet ✓ ✓ ✓

w/o Negative-R18-CCnet ✓ ✓

This outcome may be expected because what benefits the E2EDMs is not a back-
bone that excels at extracting all object information but the important objects.

Finally, we analyze the prediction accuracy of all E2EDMs. As shown in Fig.
6b, prediction accuracy decreases as the training duration increases. There is a
typical trade-off between prediction accuracy and explainability.

5.2 The effectiveness of CROCODILE across different E2EDMs

In Section 5.1, we found that CROCODILE performed best on ResNet18, thus in
Table 3, we fine-tune E2EDMs and their corresponding baselines on ResNet18.

As shown in Fig. 6c, for each E2EDM, the performance of CROCODILE con-
sistently surpasses their corresponding baselines. Furthermore, when combining
CROCODILE with the baseline methods, the Ours-R18-CBAM-O and Ours-
R18-CCnet-O achieve superior performance than Ours-R18-CBAM and Ours-
R18-CCnet-O, the Ours-R18-ABN-O achieve similar performance with Ours-
R18-ABN. These results confirm the effectiveness of the CROCODILE. Next,
we compare the heatmaps generated by different E2EDMs to intuitively un-
derstand the differences between CROCODILE and the baselines. As shown in
Fig. 7, the E2EDMs from the CROCODILE have a stronger ability to utilize
important object features compared to the baselines.

Finally, in Fig. 6d, as same as it does in Fig. 6b, prediction accuracy decreases
as the training duration increases.

5.3 Ablation Study

We remove or replace certain components of the CROCODILE and observe
whether the modified CROCODILE remains effective. Since we found that our
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Original image
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Fig. 7: Columns represent different driving scenes, rows represent E2EDMs.
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Fig. 8: The explainability of CROCODILE and its variations.

approach performs best with ResNet18 and CCnet, we first train ResNet18 using
different versions of CROCODILE and then fine-tune it on CCnet. As shown in
Table 4, we analyze the effectiveness of various versions of the CROCODILE.

– Driving-Related Feature (DRF): As introduced in Section 4.4, CROCODILE
chooses the biggest object (BO) as the driving-related feature. We make two
different modifications. 1. We randomly select an object from all the objects.
2. Instead of selecting objects, we randomly crop a region from the image.

– Contrastive Pairs (CP): CROCODILE determines the positive and negative
samples in contrastive learning through two types of crops. To observe the
impact of the crops, we replace it with another method to determine the
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positive and negative samples. In previous research, ZHANG et al. [27] pro-
pose Contrastive DeNoising (CDN). CDN randomly alters the coordinates
of the top-left and bottom-right corners of an object’s bounding box. A new
bounding box with small changes is used as a positive sample, while a new
bounding box with large changes is used as a negative sample, we replace
the crops with CDN for selecting positive and negative samples.

– Negative: As introduced in Eq. 6, CROCODILE not only considers the
similarity of the positive pairs but also considers negative pairs. We make a
modified CROCODILE by only considering the similarity of positive pairs.

As shown in Fig. 8, for the first component, changing the BO to RO or RC
significantly weakens the explainability of the E2EDM. More specifically, the RC
results in worse explainability than the RO. This implies that object information,
and particularly important object information, is crucial for explainability. For
the second component, using CDN to select positive and negative samples signif-
icantly weakens the explainability. This indicates that the crops in CROCODILE
is crucial. For the third component, without negative samples, the explainability
is significantly weakened. This aligns well with the understanding of contrastive
learning: having only positive samples without negative samples leads to the
backbone taking shortcuts, i.e., output the same feature for any image. All ex-
planations discussed in Section 5 are shown in supplementary materials.

6 Conclusion

In this paper, we proposed CROCODILE, a method that enhances the explain-
ability of E2EDMs by adding an additional pre-training stage for the backbone.
CROCODILE determines the positive and negative samples for contrastive learn-
ing through two types of crops, enabling the backbone to better process the driv-
ing environment image. Specifically, the important object features in the image
are well-preserved, without being mixed with background information. This pro-
vides a foundation for fine-tuning the E2EDM, allowing it to only use important
object features for driving action prediction, thereby improving explainability.

Although our method successfully enhances the explainability of E2EDMs,
we observed a decline in prediction accuracy, showing the trade-off between
these two aspects. Addressing the challenge of simultaneously improving both
prediction accuracy and explainability is a key focus of our future research.
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