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Abstract. Multi-media processing has achieved great success based on
semantic segmentation. Semantic segmentation can be viewed as pixel-
clustering based on semantic prototypes. However, existing methods fo-
cus more on consistent semantics while ignoring the consistency in vi-
sion, making this task challenging. Motivated by the success of discrete
visual representation learning, we propose Multi-group Visual Semantic
Centroid (MVSC) to better cluster the pixels while maintaining consis-
tent semantics of the dense features for any image encoder. Specifically,
we randomly initialize multiple groups of prototypes as multi-groups in
visual space. The visual features are also randomly split into the same
groups and forced to be aligned with the corresponding prototypes. Then
these visual prototypes are projected into the semantic space and super-
vised by the same classifier as the dense features. Compared with existing
methods, MVSC further considers the visual space and thus facilitates
the task. Experimental results on COCO-Stu! show great improvements
compared with previous methods.

Keywords: Category centroid · Representation learning · Semantic seg-
mentation.

1 Introduction

For multi-media processing, semantic segmentation improves the user experience
by enhancing the content understanding in many aspects, e.g., AR/VR scenarios.
Di!erent from the image classification task that recognizes the category of the
whole image [19, 24], semantic segmentation aims to classify each pixel into its
right category [5, 6, 22].Since FCN [22] treats semantic segmentation as a pixel-
level classification, semantic segmentation has entered into a new era.

Before the wide use of transformer [26], researchers try to enlarge the recep-
tive field, e.g., DeepLab series [6, 7], deformable convolution [11], and fuse the



2 F. Author et al.

Images Visual Consistency not considered

Semantic Consistency 
considered

Both Visual Consistency and 
Semantic Consistency considered

Fig. 1. Visual consistency and semantical consistency. Visual consistency indicates that
the pixels belonging to the same object should belong to the same category. While the
semantical consistency demonstrates that the pixels belonging to the same category
should be segmented correctly. Existing methods pay much attention to the semantical
consistency (the top caption in the middle image) while ignoring the visual consistency
(the bottom caption in the middle image). Our methods consider both semantical and
visual consistency.

multi-scale information, e.g., FCN [22], PSPNet [32] to improve the segmentation
performance. After the great success of ViT [13], designing transformer struc-
tures fitting for segmentation became popular, e.g., Segformer [30], SETR [33].

When we revisit the semantic segmentation, we find that this task can be de-
coupled into two aspects: semantic consistency and visual consistency as shown
in Fig. 1. Semantic consistency demonstrates that each pixel should be correctly
classified, while visual consistency demonstrates that the pixels of one object
should belong to the same category. Though remarkable, existing methods de-
voted all their e!orts to maintaining semantical consistency, while ignoring visual
consistency, leading to sub-optimal performance.

Motivated by the success of discrete visual representation learning [14,25], we
propose Multi-group Visual Semantic Centroid (MVSC) to consider both visual
and semantical consistency for any image encoder. Specifically, we first randomly
initialize a group of vectors that contains the same number as the categories in
the dataset, acting as the prototypes for each category in the vision space. Then
the visual features from the feature extractor are also randomly separated into
G groups as di!erent groups and aligned with the corresponding visual category
prototypes. Finally, the visual category prototypes are mapped to the semantic
space and supervised by pixel-level annotations with the same classifier as the
dense representation. To further model the visual diversity, we expand the Visual
Semantic Centroid to Multi-group Visual Semantic Centroid by expanding one
group of centroids to multiple groups.

Di!erent from the existing methods that devote all the e!orts to semantical
consistency, our methods further consider visual consistency. Experimental re-
sults on COCO-Stu! [2] dataset show great performance improvement compared
with previous methods in mIoU.
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In summary, our contributions can be listed as follows:
1) We propose MVSC to entangle the vision and semantics.
2) We propose a novel way to optimize the MVSC.
3) Experimental results show great improvements on COCO-Stu!.

2 Related work

2.1 CNN-based Semantic Segmentation

As one of the most significant tasks in computer vision, semantic segmentation
aims to classify each pixel into its right category. Based on this idea, FCN [22], as
the first fully convolutional network for semantic segmentation, inspires the fol-
lowing researchers. For example, DeepLab series [6,7] enlarges the receptive field
to further improve the performance. Deformable convolution [11] and Non-local
network [28] further expand the receptive fields by breaking the fixed geometric
structures of CNN modules. There are also some methods that utilize the multi-
scale features to enhance the representation ability, especially for the small and
the boundary of di!erent categories. For example, FCN [22] and SegNet [1] add
the features of di!erent scales from the encoder while recovering the size of the
output features. Though remarkable, existing CNN-based segmentation methods
fail to consider visual consistency leading to sub-optimal performance.

2.2 Transformer-based Semantic Segmentation

Since the great success of the self-attention mechanism in natural language pro-
cessing [26], more and more research endeavors try to transfer the success from
language to vision. ViT [13] as one of the representative works proves the po-
tential of transformer in computer vision. Since then, transformers are applied
to many downstream tasks [3, 8, 9, 21]. For semantic segmentation, transformer-
based methods can be grouped into two categories: backbone design and sparse
prediction. Backbone design methods try to design the backbone that fits the
semantic segmentation, e.g., Segformer [30], SETR [33]. Sparse prediction meth-
ods, e.g., maskformer [9] and mask2former [8], leverage the property of the trans-
former decoder where a group of trainable queries is first initialized. During
training, these queries are matched with the ground truth through bipartite
matching, and the classification and mask prediction are decoupled. However,
the queries are data-agnostic which leads to sub-optimal performance.

3 Method

3.1 Preliminaries and Method Overview

Visual and semantical consistency in semantic segmentation. Given a
dataset D = {Xi,Yi}Mi=0 where Xi → RH↑W is the images, Yi → is the corre-
sponding pixel-level annotation, i is the index of the image, and M indicates
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Fig. 2. The overview of the proposed methods. During training, We first initialize
multi groups of vectors as the vision semantic centroids as multi-groups. Then, the
image is fed into an image encoder to obtain the dense features. The dense features
and the centroids are then aligned through the feature centroid alignment and centroid
enhancement. Finally, the features and the centroids are put into the same classifier
and supervised by the corresponding labels.

the size of the dataset. During training, X is first fed into an image encoder to
obtain the pixel-level representation R

D↑H↑W where D indicates the channel
numbers. Finally, R is fed into a trainable classifier Wc for prediction.

A very natural observation is that a baby does not know any category infor-
mation about the world, but the baby can tell which objects belong to the same
category. We call this property visual consistency. Then, an adult can teach the
child what category this object belongs to and be agnostic about the environ-
ment. We call this property semantical consistency. Though many works try to
improve the segmentation performance in many ways, e.g., designing powerful
backbones [17,30,33], enlarging the receptive fields [6,11] or utilizing multi-scale
features [1, 22, 29], they still achieve sub-optimal performance due to the mere
focus on semantic consistency and the ignorance on visual consistency. Similar
works are maskformer and mask2former, however, the queries are data-agnostic,
and our method is not.
Method overview. The overall structure is shown in Fig. 2. To consider the
visual consistency, we propose Multi-group Visual Semantic Centroids (MVSC).
First, we randomly initialize G groups of vectors as the category centroid as
multi-groups in visual space, and each group contains the same number of cat-
egories in a dataset. Then, to ensure visual consistency, the visual features are
aligned with the centroids through Feature Centroid Alignment. Next, inspired
by the great success of discrete representation in image generation [14, 25], we
enhance the MVSC by the centroid enhancement. Finally, the MVSC and the
visual features are projected to the semantic space by the same classifier and
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Fig. 3. The overview of Multi-group Visual Semantic Centroids (MVSC). Multiple
groups of category centroids are first averaged within the same category across di!erent
groups to obtain global centroids. Next, the features are divided into the same groups
as the category centroids and averaged based on their ground-truth labels. Finally,
contrastive learning is applied to pull centroids from the same group closer together
while pushing centroids from di!erent groups further apart.

supervised by the corresponding category and pixel-level annotations. We will
introduce the details in the following sections.

3.2 Feature Centroid Alignment

Before the training procedure, we randomly initialize G groups of vectors V1,V2...Vg

as the centroids of each category in vision space where V1,V2, ...Vg → RC↑D and
C indicates the number of categories. Given one mini-batch of input X

B↑H↑W

b

where B is the size of the mini-batch and the corresponding annotations Yb,
suppose there are N unique categories in Xb. First, based on Yb, we group the
visual features Rb by the categories to obtain a set C. Each element in C is:

C = {Rn} where Rn = Rb · 1(Yb = n) (1)

where n → N indicates the nth category in Yb. Then the Rn is randomly split
into the same groups and the elements in each group are averaged to obtain the
centers of each group Rn1,Rn2...Rng.

For each group of centroids, we also average them to obtain the global cen-
troid VG → RC↑D. The Feature Centroid Alignment can be represented as:

Lfca(R, V ) =
N∑

i

rT
i
· vi

rT
i
· vi +

∑
N

j ↓=i
rT
i
· v↔

j

, (2)

where v↔ → VG indicates the global centroid of a specific category. Besides,
to further enhance the visual consistency, we further pull close the centroids
belonging to the same category. Specifically, we randomly separate the centroids
except the global centroid into two groups. Then we reduce the cosine similarity
of the two groups:

Lcos(V1, V2) = 1↑ cos(V1, V2), (3)
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3.3 Centroid Enhancement

Though Feature Centroids Alignement improves the visual consistency, the Vi-
sual Semantic Centroids are still data-agnostic, leading to sub-optimal visual
consistency. In this section, we propose a simple but e!ective Centroid Enhance-
ment to solve this problem inspired by the great success of discrete representation
in image generation [14,25].

Specifically, after obtaining Rn, we pick the centroids R
↔ whose labels appear

in Yb. Then we update the V
↔ as:

V
↔ = V + R ↑ SG(R) (4)

where SG indicates the stop gradient operation. Then, the augmented centroids
are fed into the classifier and supervised by the corresponding category labels.
Discussions on Centroid Enhancement. Though simple, we want to discuss
the reasons why this operation works. The first reason is that this operation in-
explicitly extracts the region-level information. Even if the value of the centroid
does not change, the gradient of the visual features that are assigned to the cen-
troid is copied. The copied gradient helps the image encoder learn the region-level
information. The second reason is that the copied gradient helps the upgrade of
the vision semantic centroids. To make the analysis easier, we ignore the gradi-
ent of Lfca. Without the copied gradient, the gradient for the visual semantic
centroids is ωL/ωWc where L indicates the total loss. With the copied gradient
the new gradient for the visual semantic centroid is ωL/ωWc · (1 + ωWc/ωE).
Note that ωWc/ωE indicates the scale of how the encoder increases. Therefore,
the visual semantic centroids can update at the same scale as the encoder and
avoid the encoder’s collapse to meaningless centroids.

3.4 Training Objectives and Inference

During training, the total loss functions are listed as follows:

L = εf · Lfca + εc · Lcos + Lce + εv · Lv (5)

where εc, εf and εv are hyperparamters to control the scale of the corresponding
loss. During Inference, as shown in Fig. 2 (bottom), only the image encoder and
the classifier is needed for the final output.

4 Experiments

4.1 Experiment Setup

Dataset and Implementation Details. We conducted experiments on the
COCO-Stu! dataset [2] where 9K images are used for training and 1K images
are used for evaluating the final performance. For the categories, this dataset
contains 80 object categories, e.g., person, car, and 91 stu! categories, e.g.,
grass, wall. For semantic segmentation, all the 171 categories are used.
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Table 1. Comparison with State-of-the-Art Methods on COCO-Stu! Dataset where
the highest performance is highlighted in bold.

Publication Method Backbone mIoU Gain

CVPR15 FCN [22] RN101 [19] 33.0 +10.6
CVPR19 SVCNet [12] RN101 [19] 39.6 +4.0
ECCV18 DANet [15] RN101 [19] 39.7 +3.9
ICCV19 SpyGR [20] RN101 [19] 39.9 +3.7
ICCV19 ACNet [16] RN101 [19] 40.1 +3.5
ECCV20 OCR [31] HRNetV2 [27] 40.5 +3.1

NeurIPS21 MaskFormer [9] RN101 [19] 39.8 +3.8
TPAMI21 HRNet [27] HRNetV2 [27] 38.7 +4.9
CVPR22 ProtoSeg [35] Swin-B [21] 42.4 +1.2
CVPR22 ProtoSeg [35] MiT-B4 [30] 43.3 +0.3

CACML24 CM [4] MiT-B4 [30] 43.2 +0.4

NeurIPS21 SegFormer [30] MiT-B4 [30] 42.9 +0.7SegFormer + Ours 43.6

We use MMsegmentation [10] as the base to complete our algorithm. For
each experiment in one dataset, we follow the default settings. Specifically, for
COCO-Stu!, all the backbones are first pre-trained on ImageNet1K [23] and the
decode head initialized by He initialization [18]. We rescale the short scale of the
image to train crop size while keeping the aspect ratio unchanged. Random scale
jittering with a factor in [0.5, 2], random horizontal flipping, random cropping,
and random color jittering are applied as the data augmentation. The optimizer
is AdamW. The learning rate is scheduled following the polynomial annealing
policy. In addition, the batch size is 16 and the crop size is 512 ↓ 512 pixels.
80K iterations are needed to obtain the best performance. ϑ is set to 0.07. εf is
set as 0.1 and εc is set as 1, and εv is set as 0.05 in training.

For simplicity, we do not apply any test-time data augmentation. Our model
is implemented in PyTorch and trained on 8 Tesla V100 GPUs with 32GB mem-
ory per card. Testing is conducted on the same machine. We report each model’s
mean intersection over the union (mIoU) score.

4.2 Comparasion with State-of-the-Art

We conduct experiments on the COCO-Stu! dataset to compare the perfor-
mance with other methods as shown in Table 1. From the table, we observe that
traditional methods like FCN and SVCNet, which utilize the ResNet-101 back-
bone, achieve mIoUs of 33.0% and 39.6%, respectively. More recent methods,
such as MaskFormer and ProtoSeg, demonstrate improvements, with mIoUs of
39.8 and 43.3%. Notably, SegFormer, which uses the MiT-B4 backbone, achieves
a strong performance with a mIoU of 42.9%. First, we compare the performance
with the baseline method Segformer [30]. For Segformer-B4, they achieve 42.9%
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Table 2. Ablation on the CE where ‘CE’ indicates the centroid enhancement.

Lcfa Lcos Lv CE mIoU mAcc

↭ ↭ ↭ ↭ 32.6 44.0
- ↭ ↭ ↭ 31.4 41.8
↭ - ↭ ↭ 32.2 43.0
↭ ↭ - ↭ 32.3 43.3
↭ ↭ ↭ - 32.1 42.8
- - - - 30.9 41.1

Table 3. Ablation on the group of prototypes.

Group Num Backbone mIoU mAcc

1

Segformer-B0

32.2 43.1
2 32.0 43.4
4 32.6 44.0
8 32.3 43.8

mIoU. After adding our proposed methods, the performance boosts up to 43.6%,
which is a 0.7% improvement, indicating our e!ectiveness.

Compared with other SOTA methods, e.g., ProtoSeg [35], under the same
backbone, i.e., Segformer-B4, our method can still be 0.3% higher than them.
When we compare one of the latest methods, i.e., CM [4], we can achieve 0.4%
higher mIoU than them. In summary, Our approach achieves the highest mIoU
score of 43.6%. This demonstrates the superiority of our method compared to
both classical and modern segmentation techniques.
Visualization of Predictions. We further visualize the prediction of our model
as shown in Fig. 6. We can find that our method has very similar results with
the ground truth label indicating the e!ectiveness of our method.

4.3 Ablation Study

To evaluate whether each proposed method can work as expected, we conduct
ablation experiments on all the parts of the proposed methods. Note that for
the ablation studies, to further indicate the generalization of our method, the
dataset we use is ADE20K dataset [34] which is comprised of 150 categories to
be segmented. For this dataset, 20K images are used for training and 2K images
for evaluation. The model we use is Segformer-B0 and trains 20K iterations. ε
is set as 0.05 and ϖ is set as 0.1 during training.

First, we conducted a comprehensive evaluation of the e!ectiveness of each
component in our model, with the results detailed in Table 4.3. The baseline
model, which serves as our point of comparison, does not incorporate any of
the proposed enhancements and achieves a baseline performance of 30.9% mIoU
and 41.1% mAcc. This serves as a foundational reference for understanding the
impact of each subsequent modification.
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Fig. 4. Visualization of centroid heatmap where the red color indicates that the pixel
is similar to the centroid and the blue color indicates the opposite.

As illustrated in the table, when all the proposed methods are integrated,
our model achieves its peak performance, with mIoU rising to 32.6% and mAcc
to 44.0% (first row). This demonstrates the synergistic e!ect of combining our
techniques, yielding substantial improvements in both segmentation accuracy
and mean accuracy. To better understand the contribution of each individual
component, we systematically ablated them one by one. First, we removed the
centroid-feature alignment mechanism, which led to a noticeable decrease in
performance, with mIoU dropping to 31.4% and mAcc to 42.4% (second row).
This indicates the critical role that clustering plays in organizing and refining
the visual space, ensuring that similar features are grouped e!ectively, which
directly enhances segmentation performance. Next, we evaluated the impact of
the centroid-pulling mechanism, specifically the loss function Lcos, which is de-
signed to ensure the compactness of centroids in the feature space. When this
component was ablated, the model’s performance su!ered a significant reduc-
tion, with mIoU decreasing by 0.4% and mAcc by 1.0%. This substantial drop
underscores the importance of maintaining tight, well-defined clusters in the fea-
ture space, which is crucial for accurate and consistent segmentation. Following
this, we examined the e!ect of removing the projection back to the semantic
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Fig. 5. Visualization of centroid heatmap where the red color indicates that the pixel
is similar to the centroid and the blue color indicates the opposite.

space, represented by Lv. The absence of this component led to a decline in per-
formance, with mIoU falling to 32.2% and mAcc to 43.3%. This result highlights
the necessity of semantic consistency, as projecting features back to the seman-
tic space ensures that the learned features remain aligned with the semantic
labels, thereby preserving the interpretability and accuracy of the segmentation
output. Lastly, we considered the e!ect of removing the centroid enhancement
technique. Without this enhancement, the model’s performance further declined,
with mIoU reduced to 32.1% and mAcc to 42.8%. This demonstrates the value
added by the centroid enhancement process, which strengthens the represen-
tation of feature centroids and thus contributes to the overall robustness and
precision of the segmentation model. Collectively, these ablation studies provide
strong evidence for the e!ectiveness of each proposed method. The consistent
improvements across various metrics, when these methods are applied, a"rm
their importance in achieving superior segmentation performance. Each compo-
nent plays a vital role in refining the model’s ability to accurately segment and
classify objects within complex visual scenes, leading to SOTA results.

Next, we conduct experiments on the group number of prototypes, and the
results are shown in Table 3. As can be seen from this table, when the group
number is set as 4, the model can reach its best mIoU and mAcc performance
to 32.6% and 44.0%. Note that when multi-group strategy is not used, i.e., the
group is set as 1, the performance drops to 32.2% for mIoU and 43.1% to mAcc
indicating the e!ectiveness of multi-group strategies.
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Images Ground Truth Prediction

Fig. 6. Visualization of the prediction.

4.4 Qualification Results

Visualization of centroid heatmap where the red color indicates that

the pixel is similar to the centroid and the blue color indicates the

opposite. First, we visualize the centroid to validate if the features are clusters
in the visual space. We randomly choose two images as the visualization sam-
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ple. Next, we compute the cosine similarity between the dense features and the
centroid by group and visualize it. The results are shown in Fig. 4 and Fig. 5.
We randomly choose two of the four prototypes to visualize. From Fig. 4, we can
find that no matter the large objects, e.g., buildings and roads, or small objects,
e.g., person and motorbike, the visual features are all very compact with the
centroids. In Fig. 5, even the categories with similar appearance, i.e., wall and
bed, the visual features can be grouped into the right category, indicating the
e!ectiveness of our methods. Visualization of Predictions. Finally, we visual-
ize the predictions of our model as shown in Fig. 6. First, we give the prediction
of the images in Fig. 4 and 5. As can be seen from the figure, the corresponding
objects can be segmented correctly. Besides, we give another 4 images and all of
them can achieve satisfying results.

5 Conclusion

In this paper, we presented a Multi-group Visual Semantic Centroid (MVSC)
method, aimed at improving semantic segmentation performance for any image
encoder. MVSC is motivated by the consideration that semantic segmentation
should consider both visual consistency and semantic consistency. To achieve
these two consistencies, we propose Feature Centroid Alignment and Centroids
Enhancement to optimize the DSVC. Feature Centroid Alignement clusters the
dense features in the visual space and Centroids Enhancement helps the cen-
troids be updated at the same scale as the image encoder. Through extensive
experiments and comparative analysis with state-of-the-art methods, our ap-
proach demonstrated superior performance, achieving a new benchmark mIoU
of 43.6. This result not only surpasses the original SegFormer model by a sig-
nificant margin of +0.7 mIoU but also outperforms other leading segmentation
models. Future work could explore the application to additional segmentation
tasks, further solidifying its role in next-generation computer vision systems.
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