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We present an efficient method for object image classification. The method is an extention of the constellation model, which is a
part-based model. Generally, constellation model has two weak points. (1) It is essentially a unimodal model which is unsuitable
to be applied for categories with many types of appearances. (2) The probability function that represents the constellation model
requires a high calculation cost. We introduced multimodalization and speed-up technique to the constellation model to overcome
these weak points. The proposed model consists of multiple subordinate constellation models so that diverse types of appearances
of an object category could be described by each of them, leading to the increase of description accuracy and consequently,
improvement of the classification performance. In this paper, we present how to describe each type of appearance as a subordinate
constellation model without any prior knowledge regarding the types of appearances, and also the implementation of the extended
model’s learning in realistic time. In experiments, we confirmed the effectiveness of the proposed model by comparison to methods

using BoF, and also that the model learning could be realized in realistic time.

1. Introduction

In this paper, we consider the problem of recognizing
semantic categories with many types of appearances such
as Car, Chair, and Dog under environment changes such as
direction of objects, distance to objects, illumination, and
backgrounds. This recognition task is challenging because
object appearances widely vary by difference of objects in
semantic categories and environment changes, which com-
plicates feature selection, model construction, and training
dataset construction. One application of this recognition task
is image retrieval.

For these recognition tasks, a part-based approach, which
uses many distinctive partial images as local features, is
widely employed. By focusing on partial areas, this approach
can handle a broad variety of object appearances. Typical
well-known methods include a scheme using Bag of Features
(BoF) [1] and Fergus’s constellation model [2]. BoF is an
analogy to the “Bag of Words” model originally proposed
in the natural language processing field. Approaches using
BoF have been proposed, using classifiers such as SVM (e.g.,

[3-5]) and document analysis methods such as probabilistic
Latent Semantic Analysis (pLSA), Latent Dirichlet Allocation
(LDA), and Hierarchical Dirichlet Processes (HDPs) (e.g.,
[6-8]).

On the other hand, the constellation model represents
target categories by probability functions that represent local
features that describe the common regions! of objects in
target categories and the spatial relationship between the
local features. This model belongs to the “pictorial structure”
approach introduced in [9]. The details will be introduced in
Section 2.1.

The constellation model has the following three
advantages.’

(a) Adding or changing the target categories is easy. In
this research field, recognition methods are often
categorized as a “generative model” or a “discrimina-
tive approach (discriminative model + discriminant
function)” [10]. This advantage comes from the fact
that the constellation model is a generative model.
A generative model makes a model for each target



category individually. Therefore the training process
for adding target categories does not affect the
existing target categories. For changing the existing
target categories, it is only necessary to change the
models used in the tasks; no other training process
is necessary.

On the other hand, discriminative approaches, which
optimize a decision boundary to classify all target
categories, have to relearn the decision boundary
each time adding or changing the target cate-
gories. For recognition performance, the discrimina-
tive approach generally outperforms the generative
model.

(b) Description accuracy is higher than that of BoF due to
continuous value expression. Category representation
by BoF is a discrete expression by a histogram formed
by the numbers of local features corresponding
to each codeword. On the other hand, since the
constellation model is a continuous value expression
by a probability function, the description accuracy is
higher than BoF.

(c) Position and scale information can be used effectively.
BoF ignores spatial information of local features to
avoid complicated spatial relationship descriptions.’
On the other hand, the constellation model uses
a probability function to represent rough spatial
relationships as one piece of information to describe
the target categories.

In spite of the advantages, the constellation model has the
following weak points.

(1) Since it is essentially a unimodal model, it has
low description accuracy when objects in the target
categories have various appearances.

(2) The probability function that represents the constel-
lation model requires high computational cost.

In this paper, we propose a model that improves the weak
points of the constellation model. For weak point (1), we
extend the constellation model to a multimodal model. A
unimodal model has to represent several types of appear-
ances as one component. But by extension to a multimodal
model, some appearances can be cooperatively described
by components of the model, improving the accuracy of
category description. This improvement is the same as
extending a representation by Gaussian distribution to that
by Gaussian Mixture Model in local feature representation.
In addition, we speed-up the calculation of the probability
function to solve weak point (2).

Another constellation model is proposed before Fergus’s
constellation model in [11]. Multimodalization of this
model was done in [12], but the structure of these models
considerably differs from Fergus’s constellation model, and
they have the following three weak points against Fergus’s
model.

(i) They do not have the advantage (b) of Fergus’s
constellation model since the way to use local features
is close to BoE.
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(ii) They do not use the information of common regions’
scale.

(iii) They cannot learn appearance and position simulta-
neously since the learning of them is not indepen-
dent.

However, Fergus’s constellation model requires high com-
putation cost to calculate the probability function which
represents the model, so it is unrealistic to multimodalize the
model since the estimation of parameters in the probability
function requires high computation cost. So we realize the
multimodalization of Fergus’s constellation model together
with the speeding-up of the calculation of the probability
function. Fergus’s constellation model was also improved in
[13], but the improvements were made so that the model
can make use of many sorts of local features and modify the
positional relationship expression. For clarity, in this paper
we focus on the basic Fergus’s constellation model.

Image classification tasks can be classified into the

following two types.

(1) Classify images with target objects occupying most
area of an image, and the object scales are similar
(e.g., Caltech101/256).
(2) Classify images with target objects occupying partial
area of an image, and the object scales may differ (e.g.,
Graz, PASCAL).
The method proposed in this paper targets type (1) images.
It can, however, also handle type (2) images using methods
such as the sliding window method and then handle them as
type (1) images.

The remainder of this paper is structured as follows. In
Section 2, we describe the Multimodal Constellation Model,
the speeding-up techniques, and the training algorithm. In
Section 3, we explain the classification method and describe
the experiments in Section 4. Finally, we conclude the paper
in Section 5.

Note that this paper is an extended version of our
work [14], which includes additional experiments and
discussions, about number of effective components (part
of Section 4.3), object appearances described in each com-
ponent (Section 4.5), and comparison with Fergus’s model
(Section 4.6).

2. Multimodal Constellation Model

In this section, we describe Fergus’s constellation model,
then explain its multimodalization, and finally describe the
speeding-up technique for the calculation.

2.1. Ferguss Constellation Model [2]. The constellation

model describes categories by focusing on the common

object regions in each category. The regions and the posi-

tional relationships are expressed by Gaussian distributions.
The model is described by the following equation:

pI10©) = > p(A,X,S,h|©)
heH

= > p(Ah,04)p(X|h, 6x) (1)

heH

- p(Sth, 05) p(h|bother),
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where I is an input image and ©® is the model parameters.
Image I is expressed as a set of local features which
are extracted from image I by a local feature detector
(e.g., [15]). Each local feature holds the feature vectors
of appearance, position, and scale. The feature vectors
of each local feature are brought together according to
appearance, position, and scale, and shown as A, X, and S.
In addition, as a hyperparameter, the model has the number
of regions for description: R. h is a vector that expresses
the combination of correspondences between local features
extracted from image I and each region of the model. H is
a set of all the combinations of correspondences. By > ey
all combinations are covered. p(Alh,04) is a probabilistic
distribution which expresses appearances of regions of
the model by multiplication of R Gaussian distributions.
p(X1h, Ox) expresses a pair of x, y coordinates of each region
as a 2R dimensional Gaussian distribution. p(S|h, 6s) is a
probabilistic distribution which expresses scale of regions as
one Gaussian distribution. For details refer to [2].

The part of the equation, which cyclopedically exhaus-
tively calculates all combinations between all local features
and each region of the model (>,cp), is in the form of a
summation. However, the part of the equation that describes
a target category, p(4, X, S, h|®), is substantively represented
by a multiplication of the Gaussian distributions. Therefore,
Fergus’s constellation model can be considered as a unimodal
model.

2.2. Multimodalization. For improving the description accu-
racy, we extend the constellation model from a unimodal
model to a multimodal model. We formulate the proposed
“Multimodal Constellation Model” as follows:

K L
pm(11©) = Z{HG(Xllekfu)} I

k 1
K L
S [lotaise ootz Jo(sits ) |

* Tlk,s

Tk = arg max G(x16k,),

2

where K is the number of components. If K > 2, then the
model becomes multimodal. Each type of appearance in a
target object category is described by each component, so
the description accuracy is expected to be improved. L is the
number of local features extracted from image I, and G(-) is
the Gaussian distribution. Also, ® = {0k,,m}, 0 = {u, X},
I = {x;}, and x = (A, X,S). 6k, is a set of parameters of
the Gaussian distribution of region r in component k. x;
is the feature vector of the Ith local feature. A, X, and S,
which are the feature vectors of appearance, position, and
scale, respectively, are subvectors of x. m is the existence
probability of component k, which assumes 0 < m < 1
and Zf me = 1. 7y is the index of the most similar region
to the local feature I of image I, in component k. Moreover,

R (number of regions) exists as a hyperparameter, though it
does not appear explicitly in the equation.

2.3. Speeding-Up Techniques. Since the probability function
that represents Fergus’s constellation model requires high
computation cost, estimating the model parameter is also
time consuming. In addition, this complicates multimodal-
ization because multimodalization increases the number of
parameters and thus completing the training in realistic
time becomes impossible. Here we describe two speeding-up
techniques.

Simplifying Matrix Calculation. For simplification, we app-
roximated all covariance matrices to be diagonal. This is
equivalent of assuming independence. This modification
considerably decreases the calculation cost of (x — ) 2~ (x —
p) and |Z| needed for calculating the Gaussian distributions.
The total calculation cost is reduced from O(D?) to O(D)
for D X D matrices. Although the approximation decreases
the individual description accuracy of each component,
we expect that the multimodalization increases the overall
description accuracy. In particular, when assuming that X is
a diagonal matrix whose diagonal components are o7,

D

x-p)'E2 (x—p) =

d

D
12| =] Jo3.
d

Modifying > ey to [} and argmax,. The order of >,y
in equation (1) is O(LR), where L is the number of local
features and R is the number of regions. In actuality, even
though A* search method is used for speeding-up in [2], the
total calculation cost is still large. In the proposed method
we changed > j,cy to H,L and arg max,. As a result, the cost is
reduced to O(LR). This approach is same with the calculation
cost reduction in [16] which targeted the classification of
identical view angle car images captured by a fixed camera
and modified the constellation model for this task.

Here we compare the expression of each model. Fer-
gus’s model exhaustively calculates probabilities of all com-
binations of correspondences between regions and local
features. The final probability is calculated as a sum of
these probabilities (>,cy). On the other hand, our model
calculates the final probability using all the local features
at once. This is expressed as []}. After the region which is
most similar to each local feature is selected (argmax,), the
probability to the region is calculated for each local feature.
The final probability is calculated as a multiplication of these
probabilities. For the detail of the modification refer to [16].

1 2
(g — ,
0_5( d [f‘d)

(3)

2.4. Parameter Estimation. Model parameter estimation is
carried out using the EM algorithm [17]. Algorithm 1
shows the model parameter estimation algorithm for the
Multimodal Constellation Model. N denotes the number of
training images, and n denotes the index of the training
image. x,; denotes a feature vector of local feature I in
training image 7. 7, denotes 7 in training image n.
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(1) Initialize model parameter 0k, (= {g;.,> Tk }), k.
(2) E step:

7. p (1| 6k)
Sk mep(Li6x)

N

Gkn =
(3) M step:
P Z qk,nxn,l)

=—2>
Hier Qi W k(Fg=r)
1

new _
2“k,r -
Qk,r n L(Fp=r)
new _ &
k - N’

N
where Qk,r = Z Z Gk,n>

L =1)

L
where p(I,,[6k) = E[G(xn,zlﬂk,;km,l).
N
2 Z qk,n (Xn,l - ”il,crw)(xn,l - ,uk),

(4) If parameter updating converges, the estimation process is finished, and p(k) = 7, otherwise return to (2).

new )f
b

N
Ni = X qkn.
n

ArLGorITHM 1: Model parameter estimation algorithm for the multimodal constellation model.

We explain the initial values in initialization (1). The
initial values of g and X (diagonal matrix with only diagonal
0?) are initialized based on the range of feature values. p is
initialized as random values considering the range of feature
values. ¥ is initialized as static values also considering the
range of feature values. 7 is initialized as 1/K.

One difference with the general EM algorithm for the
Gaussian Mixture Model is that the data that update u,
are not per image but per local feature extracted from the
images. Degree of belonging qi, of training image n to
component k is calculated in the E step, and then all local
features extracted from training image n participate in the
updating of g, X based on the value of gy ,,. In addition, local
feature [ participates in the updating of g, X of only region
7k.n to which local feature I corresponds.

3. Classification
The classification is performed by the following equation:
c= argmax pm(I1©:)p(c), (4)

where ¢ is the resultant category, c is a candidate category for
classification, and p(c) is the prior probability of category c,
which is calculated as the ratio of training image of category
c to all candidate categories.

Since the constellation model is a generative model, it
is easy to add categories or change candidate categories,
and thus the training process is only independently needed
for the first time a category is added. For changing already
learnt candidate categories, it is only necessary to change the
models used in the tasks. On the other hand, discriminative
approaches make one classifier using all of the data for all
candidate categories. Therefore it has the following two weak
points: a training process is needed every time candidate
categories are added or changed, and for relearning, all of the
training data need to be kept.

4. Experiments

4.1. Conditions. We evaluate the effectivity of multimodal-
ization for constellation models by comparing two mod-

els Multimodal Constellation Model (“Multi-CM™) and
Unimodal Constellation Model (“Uni-CM”). Uni-CM is
equivalent to the proposed model when K = 1 (unimodal).

We also compare the proposed model’s performance to
two methods using BoF. “LDA +BoF” is a method using
LDA. Each category c is described by LDA probabilistic
model individually (p(I|®,), like a model for bag of words),
and an image I is classified by (4). “SVM +BoF” is a
method using SVM. In the feature space of BoF (codebook
size dimension), SVM classifies an image I described by a
BoF feature vector. Multi-CM, Uni-CM, and LDA + BoF are
generative models, SVM + BoF is a discriminative approach,
and LDA is a multimodal model.

Next, we discuss the influence of hyperparameters K
and R on the classification rate, compare the proposed
model’s performance to Fergus’s model with limitation
due to the difficulty of Fergus’s model calculation time,
and quantitatively validate the two previously mentioned
advantages (b) and (c) of the constellation model.

Two image datasets were used for the experiments. The
first is the Caltech Database [2] (“Caltech”), and the other
is the dataset used in the PASCAL Visual Object Classes
Challenge 2006 [18] (“Pascal”). As a preparation for the
experiments, object areas were clipped from the images as
target images using the object area information available in
the dataset, because these datasets do not assume the task
targeted in this paper (classifying images with target objects
occupying most area of an image to correct categories). We
defined the task as classifying target images into correct
categories (i.e., for ten categories dataset, it is ten-class
classification). The classifying process was carried out for
each dataset.* Half of the target images were used for training
and the rest for testing.

Caltech consists of four categories. Figure 1 shows exam-
ples of the target images. The directions of the objects in these
images are roughly aligned but their appearances widely vary.
Table 1 shows number of object area in each category. Pascal
has ten categories. Figure 2 shows examples of the target
images. The direction and the appearance of objects in Pascal
vary widely. Furthermore, the posees of objects in some
categories (e.g., Cat, Dog, and Person) vary considerably.
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FIGURE 2: Target images in Pascal [18].

Therefore classification of Pascal images is considered more
difficult than that of Caltech images. And Table 2 shows
number of object area in each category.

The identical data of local features are used for all meth-
ods compared here to exclude the influence of difference
of local features on the classification rate. In addition, we
experimented ten times by changing training and test images
randomly and used the average classification rate of ten times
for comparison.

In this paper, we empirically determined K (number of
components) as 5 and R (number of regions) as 21. For the
local features, we used the KB detector [15] for detection and
the Discrete Cosine Transform (DCT) for description. The
KB detector outputs positions and scales of local features.
Patch images are extracted using these information and are
described by the first 20 coefficients calculated by DCT
excluding the DC. Therefore, the dimension of a feature
vector xis 23 (A:20,X:2,S:1).

4.2. Effectivity of Multimodalization and Comparison to
BoF. For validating the effectivity of multimodalization, we
compared the classification rates of Multi-CM and Uni-
CM and applied Student’s t-test to verify the effectivity.
We also compared the proposed method to LDA + BoF
and SVM + BoFE, which are related methods. These related
methods have hyperparameters to represent the codebook

TasLE 1: Number of object area in Caltech [2].

Category name Number of object area
Airplanes 1074
Cars Rear 1155
Faces 450
Motorbikes 826

TaBLE 2: Number of object area in Pascal [18].

Category name Number of object area
Bicycle 649
Bus 469
Car 1708
Cat 858
Cow 628
Dog 845
Horse 650
Motorbike 549
Person 2309
Sheep 843

size (k of k-means) for BoF. The number of assumed topics
for LDA corresponds to the number of components K of
Multi-CM. We show the best classification rates obtained by
changing these hyperparameters in the following results.

Table 3 shows classification rates of Multi-CM and Uni-
CM together with the standard deviations over ten trials.
In addition, we verified the significance of Multi-CM and
Uni-CM for both datasets by Student’s t-test (P < 0.01).
The reason for this is considered that multimodalization
to a constellation model is effective to such datasets as
Caltech and Pascal which contain various appearances in
a category (e.g., Caltech-Faces: different persons, Pascal-
Bicycle: direction of bicycles).

Since the proposed model shows better classification rate
than that of LDA + BoF (generative model) or SVM + BoF
(discriminative approach), it indicates that the constellation
model has better classification ability than the methods based
on BoF, for either generative or discriminative approaches.

4.3. Influence of the Number of Components K. Here we
discuss the influence of K, one of the hyperparameters of
the proposed method, on the classification rate. K is changed
in the range of 1 to 9 in increments of 2, to compare the
classification rates at each K. When K = 1, it is Uni-CM,
and when K > 2, they are Multi-CM. The number of regions
R s fixed to 21.

Figure 3 shows the results. Note that the scale of the
vertical axis for each graph differs because the difficulty of
each dataset differs greatly. By comparing the graphs, we can
see that the classification rates roughly saturate at K = 5
(Caltech) and 7 (Pascal). We can understand this because the
appearance variation of objects for Pascal is larger than that
for Caltech. However, we can choose K = 5 as a constant
setting because these classification rates only differ slightly
when K = 2.
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TaBLE 3: Effectivity of multimodalization and comparison to BoF, by average classification rates and standard deviations over ten trials (%).

Dataset LDA + BoF SVM + BoF Uni-CM Multi-CM
Caltech 94.7 + 0.66 96.4 + 0.47 98.7 +0.32 99.5 +0.10
Pascal 29.6 +0.78 27.9 +0.44 37.0 £ 0.39 38.8 + 1.00
100 8
27
99.75 §
=
: 2
S 995 8>
g - o
I =
8 99.25 &
] s 03
& S
3 22
5] =]
% 7
g 98.75
<
0
1 3 5 7 9
98.5
Number of components (parameter: K)
98.25 —— Airplanes —x— Faces
1 3 5 7 9 —— Cars Rear —&— Motorbikes
Number of components (parameter: K) (a) Caltech
[l Uni-CM
1 Multi-CM 8
(a) Caltech " 7
g
§6
£
40 g5
2
S 4
39.5 =
« 3
—~~ -
S Wy x,
e — o g
=] =]
2 385 Z
= I
.8
§ 38 0
=] ’ ’ ’ | ’ ’ ' ’ 1 3 5 7 9
K] Number of components (parameter: K)
S 375
& —— Cat —x— Motorbike
:>:’ 37 ) ) | ) ) 7 ) —>— Horse —8— Sheep
(b) Pascal
36.5
Figure 4: Number of effective components.
36
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Number of components (parameter: K)
B Uni-CM In addition, the fact that the classification rates when
] Multi-CM K = 2 are better than K = 1 shows the effect of

multimodalization.

Next, we discuss the number of effective components
for each category. We decided that the effective component
Figure 3: Influence of K (number of components) on average is a component that satisfies 7y > (1/K) - 0.9. 1/K is the
classification rate. (Note that the scale of the vertical axis for each value of 71 when all components are effective and the effect
graph differs because the difficulty of each dataset differs greatly.) levels are equal. We decided this value as the minimum value,

(b) Pascal
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(a) Caltech
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FiGure 5: Influence of R (number of regions) on average classifi-
cation rate. (Note that the scale of the vertical axis for each graph
differs because the difficulty of each dataset differs greatly.)

and applied 0.9 for allowing some variation. Figure 4 shows
graphs with horizontal axes of the number of components K
and vertical axes of the number of effective components. The
graphs show all categories for Caltech, and some categories
for Pascal. From the graphs, we can see that the number of
effective components saturates at a certain point, and also
the number of effective components for each category varies.
We consider that this value roughly indicates the number of
object appearances for each category. From the result, we
can see that if K increases beyond necessity, the number of
components which are learnt as effective components does
not change.

Moreover, from this result, we can see that the variation
of appearance in Pascal is generally larger than that in
Caltech. Actually, when K = 9, the average numbers of

effective components for all categories are 3.2 for Caltech and
4.0 for Pascal.

4.4. Influence of the Number of Regions R. To discuss the
influence of R, another hyperparameter of the proposed
method on the classification rate, we evaluated the classifica-
tion rates by increasing R in the range of 3 to 21 in increments
of 3. The classification rate at each R is shown in Figure 5. The
number of components K is fixed to 5. The results show the
classification rates of both Uni-CM and Multi-CM.

The improvement of classification rates saturates at
around R = 9 for Caltech and at R = 21 for Pascal.
In addition, at all R, the classification rates of Multi-CM
are higher than those for Uni-CM, so the effectivity of
multimodalization is also confirmed here.

For Fergus’s constellation model, R = 6-7 is the
extent that the training process can be finished in realistic
time. Thanks to the proposed method with the speed-up
techniques, we increased R (number of regions) until the
improvement of the classification rate saturated and at the
same time in realistic time. Therefore the proposed speeding-
up techniques not only contributed to the realization of
multimodalization but also to the improvement of the
classification performance.

4.5. Object Appearances Described in Each Component. We
discuss object appearances described as model components.
The model was learnt as K = 10 to make it easy to
understand what appearances are learnt as component. We
apply the learnt multimodal constellation model to test
images of the same category that was learnt and calculate the
contribution rate {]_[lLG(xl |0k7.,)} - i for each test image for
each component. A component with the largest contribution
rate is decided as the component that the test image belongs.

Figures 6 and 7 show example images belonging to
each component; five dominant components out of ten
components are shown. In Caltech-Cars Rear, the groups
seem to be constructed mainly by difference of car types.
In contrast, Caltech-Motorbikes seem to be constructed
by the difference of background appearances because the
differences of the backgrounds are larger than those of the
bike appearances. In Pascal-Car, the direction of objects and
the luminance of the object bodies seem to have affected the
group construction. The reason that the luminance affects
the grouping is that DCT of luminance is used for local
feature description. In Pascal-Motorbike, direction of objects
affects the grouping. Pascal-Cow and Pascal-Cat have a wide
appearance variation and are difficult to make groups. But
the direction of bodies and the texture roughly form groups.

4.6. Comparison with Fergus’s Model. Because Fergus’s model
requires high computation cost and does not run in realistic
time under the same experimental condition as ours, we
separately discuss this comparison. For this comparison, we
limit L (the number of local features in an image) to 20
and set R (the number of parts) to 3 (original setting for
our model is 21)° for both models. In addition, we set our
model to the unimodal condition (K = 1) to examine the
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(a) Cars Rear (b) Motorbike

FiGure 6: Example of groupings for each component of the model (Caltech). Each row shows each component. (In Cars Rear, it seems as
if images are shown twice, but this is because Caltech database consists of a lot of images which include same object at same angle but shot
timings differ.)

2

A 1/

g

(c) Cow (d) Cat

FiGure 7: Example of groupings for each component of the model (Pascal). Each row shows each component.
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TaBLE 4: Comparison with Fergus’s constellation model, by average
classification rate and standard deviations over ten trials (%), under
limited condition (L = 20, R = 3) to compare with Fergus’s model.

TaBLE 5: Validation of the effectivity of continuous value expression
and position-scale information, by average classification rate and
standard deviations over ten trials (%).

Our model (unimodal) Fergus’s model Dataset LDA + BoF Multi-CM no-X,S Multi-CM
Caltech 93.0 + 0.68 71.1 = 0.60 Caltech 94.7 + 0.66 96.5 + 0.51 99.5 +0.10
Pascal 31.3 +£0.34 19.5 + 0.68 Pascal 29.6 = 0.78 33.5+0.50 38.8 + 1.00

effects of the simplifications (Section 2.3). The differences
between these models are only the simplifications. Same
as the experiment in Section 3, we experimented ten times
by varying training and test images and used the average
classification rate of ten times for comparison.

Table 4 shows the experimental result. For both Caltech
and Pascal, the classification rates of the proposed method
are higher than those of Fergus’s model. First, this result
shows that our model outperforms Fergus’s model in spite
of the limited condition which is favorable for Fergus’s
model. Second, this result also shows that the effects of the
simplifications (Section 2.3) do not affect the recognition
performance. Note that Fergus’s model implemented by
Fergus et al. would give better performance than our
implementation, thus a better performance than this result
would be given.

4.7. Discussion of Computation Time. First we compare
the computation time required for the experiments in
Section 4.6. The computation time of Fergus’s constellation
model to estimate model parameters is five minutes per
model for R = 3 and L = 20 per image. However, our model
that applies the above two techniques takes only a second per
model to estimate the parameters in the same condition and
K =1 (unimodal).

For reference we also compare with the computation
time reported in [2]. Note that this is not an accurate
comparison because each experimental condition probably
does not match (performance of computers used and
implementations). According to [2], Fergus’s model takes
24-36 hours per model for R = 6-7, L = 20-30 per image,
using 400 training images. However, our model for K = 1
(unimodal) takes around ten seconds per model in the same
condition. In addition, even when K > 2 (multimodal), it
only takes a few scores of seconds.

4.8. Validation of the Advantage of the Constellation Model.
Here, we quantitatively validate the advantages of the
constellation model described in Section 1; (b) Description
accuracy is higher than BoF due to continuous value
expression, and (c) position and scale information ignored
by BoF can be used effectively.

First, advantage (b) is validated. The comparison of BoF
and the constellation model should be performed on the
condition only with the difference that a continuous value
expression by a probability function and a discrete expression
by a histogram, formed by the numbers of local features,
correspond to each codeword. Therefore we compared
LDA + BoF, which is a generative multimodal model identical
to a constellation model, and Multi-CM without position

and scale information that are not used in LDA + BoF
(“Multi-CM no-X,S”). Next, to validate advantage (c) we
compared Multi-CM no-X,S and the normal Multimodal
Constellation Model.

Table 5 shows the classification rates of these three
methods. The classification rate of Multi-CM no-X,S is better
than that of LDA + BoF, demonstrating the superiority of
continuous value expression. The Multi-CM classification
rate outperforms Multi-CM no-X,S. This shows that the
constellation model can adequately use position and scale
information.

5. Conclusion

We proposed a multimodal constellation model for object
category recognition. Our proposed method can train and
classify faster than Fergus’s constellation model and describe
categories with a high degree of accuracy even when the
objects in the target categories have various appearances.

The experimental results show the following effectivities
of the proposed method:

(i) performance improvement by multimodalization

(ii) performance improvement by speeding-up tech-
niques, enabling use with more regions in realistic
time.

We also compared Multi-CM to the methods using BoF,
LDA + BoF, and SVM + BoE. Multi-CM showed higher per-
formance than these methods. We also compared Multi-
CM in the unimodal condition with Fergus’s model and
confirmed that the simplification of the model structure for
the speeding-up in the proposed model does not affect the
classification performance. Furthermore, we quantitatively
verified the advantages of the constellation model; (b)
Description accuracy is higher than BoF due to continuous
value expression, and (c) position and scale information
ignored by BoF can be used effectively. In Sections 1 and
3, by comparing generative and discriminative approaches,
we also showed that the advantage (a) of the constellation
model is that candidate categories can be easily added and
changed.

In future works, we try to apply our method to object
detection, and to investigate deeply the relationship between
the appearance variations which seem to differ for each
category and the hyperparameters.

Endnotes

1. The number of regions is assumed to be five to seven.
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Since advantages (b) and (c) are not often described
in other papers, we validate them quantitatively in
Section 4.8

There are some extended BoF methods that consider
spatial information (e.g., [19, 20]).

Caltech101, 256 exist as datasets considering the task
targeted in this paper, but these are not suitable for
experiments of this paper because the number of image
in each category is small.

Fergus’s original paper [2] set R to R = 6-7. But our
paper set R to 3 because of computational cost. For
evaluation, the paper in [2] calculated one classification
rate only, but our paper used average rate of ten time
classifications, thus R = 6—7 was not a realistic setting
for our paper.
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