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Abstract—We propose focused color intersection with efficient searching for identifying and extracting the
objects in a complex scene based on color similarity. The method matches the models against different parts of a
scene, called focus regions, using normalized color histogram intersection. The best matching focus region is
determined by an efficient search strategy employing upper bound pruning. This search strategy, called active
search, concentrates its effort on parts of the scene having high similarity with the object. Consequently, it
achieves a large reduction in computational effort without sacrificing accuracy. An efficient algorithm for
evaluating the color histogram intersection between a model and a focus region is also given. Experiments
conducted demonstrate that multiple known objects in complex scenes can be extracted by this process. The
method is stable against scale changes, two-dimensional rotation, moderate changes in shape and partial
occlusion. € 1997 Pattern Recognition Society. Published by Elsevier Science Ltd.
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1. INTRODUCTION

Retrieving known objects from a complex scene is
central to several practical vision applications. This task
involves identifying the known objects in the scene and
determining the region occupied by these objects. In
addition to object recognition and scene interpretation,
the applications include associative retrieval, querying
image databases with visual data, search and replace
operations in multimedia document editing, etc. In this
paper we propose a strategy for identifying known
objects and demarcating the approximate regions occu-
pied by these objects in a complex scene using only color
information.

Most of the strategies proposed for identifying
and locating objects in a scene make use of geometric
features.''”® These methods extract local features
such as corners and edges from the scene and then
match them against the model’s local features.
Extracting local geometric features of objects in a
complex scene would, in general, be computationally
very expensive. Changes in orientation, scaling or view
point would introduce additional complexity. Also,
shape-based recognition techniques cannot be applied
to non-rigid objects. Template matching techniques
constitute the other approach for detecting objects in a
scene under small distortions and noise.?” Usually
several views of the model are stored and matched
against the input scene to account for changes due to
two- or three-dimensional orientation, scaling, shape
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changes and other distortions. The matching is done
using moments,” parametric eigenspace representa-
tions,” etc. Irrespective of the representation scheme
employed, storing and matching against several tem-
plates for the same model could be computationally
very expensive. Hence it would be desirable to do the
matching using features invariant to as many changes as
possible. The color distribution of objects present one
such feature and is adopted in this work. The color
distribution is invariant to changes in two-dimensional
orientation and shape. It is stable against moderate
occlusion and small changes in three-dimensional
orientations.

Recently, it has been demonstrated that color
distributions constitute a powerful feature for image
matching. Swain and Ballard® introduced color simi-
larity evaluation by Histogram Intersection, for object
detection and image database indexing, and Histogram
Back projection for object location. It has been shown by
Stricker and Swain'® that the histogram space can be
used to store sufficiently large numbers of distinguish-
able image histograms. Hafner et al'”’ proposed a
class of quadratic form distance functions for evaluating
color histogram similarity. Quadratic form distance
functions are employed in IBM’s QBIC image retrieval
system.® Mehtre et al.®® proposed two features for
color matching, namely the mean values of the
individual color axes and the histogram of reference
colors. These features reduce the level of detail in the
matching process and are applicable mainly for images
with large regions of uniform color. The CORE"? image
retrieval system employs these features. A color-based
image retrieval system using fuzzy matching techniques
has been proposed in reference (11). The different
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colors are segmented and their coverage and distributions
are estimated. Queries based on these features are
evaluated using fuzzy techniques. Schettini'? applied
color matching along with shape matching for detecting
a known object against a known background. Here
shape forms the primary cue and a histogram intersection
value is applied for verifying the hypothesis generated
by shape matching. The above approaches indicate
that color constitutes an important feature for image
matching. However, all the methods except that in re-
ferences (11,12) confine themselves to evaluating the
similarity between two images and their roles are limited
to indexing image databases given most of the query
image.

The color histogram of a complex scene containing
several objects will be considerably different from that of
the individual objects. Consequently, evaluating the si-
milarity between the scene histogram and model histo-
grams will fail to reliably detect the object. In such
situations, matching the model histograms against a
histogram of parts of the scene results in better precision
and recall.*>'¥ Vinod and Murase’ and Ennesser and
Medioni'® have shown that object locations obtained by
matching local histograms are better than those obtained
by histogram backprojection.® Ennesser and Medio-
ni"® compute histogram intersections with all local
areas of a given size considering all positions. When
size is unknown, a greedy search for the locally best size
is done at each location. This approach would, in general,
require a large number of histogram intersection evalua-
tions and give a locally best match. Vinod et al®
proposed an upper bound pruning search, called
active search, for detecting the globally best position
and size with low computational effort. Upper bound
pruning skips over uninteresting areas in the image
and concentrates only on promising parts of the
image matching the model. Consequently, active
search also detects the absence of a model very
quickly. In order to detect and extract multiple objects
in a scene, detecting the best matching size and position
for each object will not be sufficient. A conflict re-
solution strategy will be necessary to ensure that the
parts of an image associated with different objects are
disjoint.

In this paper we propose an efficient, iterative strategy
for extracting multiple known objects from complex
scenes. The model histograms are matched against
parts of the image, called focus regions, which are
extracted from a multiresolution structure. In each
iteration, active search is used for efficiently deter-
mining the best matching focus region for each
model. A competitive identification and pruning step
associates a subimage with a model and prunes the
image and the set of models. This step ensures that
image parts associated with different objects are disjoint.
Pruning the image and the set of models reduces
unnecessary computation. The similarity measure used
is Histogram Intersection. The proposed method can
operate in situations where the background is unknown,
the objects are of different sizes and under considerable
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occlusion and overlapping of objects. It is stable
against changes in two-dimensional orientation and
shape. The method, however, is influenced by changes
in lighting conditions and major changes in three-dimen-
sional pose.

In Section 2 we give details of the proposed method.
Experimental results obtained under various conditions
are given in Section 3. A concluding discussion is pre-
sented in Section 4.

2. FOCUSED COLOR INTERSECTION WITH ACTIVE
SEARCH

The following setting is considered for developing the
method. “Given a set of models M = {M,},n=1,..,N,
where each M,, is the color image of a known object and a
scene .f of X x Y pixels (ie. F=p,, x=1,....X,
y = 1,...,Y), identify any model objects present in the
scene and extract the regions occupied by them.” The
scene # may consist of zero or more known objects
against a complex unknown background. The absolute as
well as relative sizes of the objects may vary from scene
to scene. There could be any amount of change in two-
dimensional orientation and small change in three-di-
mensional orientation of the objects. Objects may be
partially occluded and the shape of an object may vary
from scene to scene.

In this section we describe the following steps of the
proposed method:

e Extracting and Matching Focus Regions—Extracting
the set of focus regions in a multiresolution structure
and an efficient algorithm for evaluating the color
similarity between a focus region and a model.

o Competitive Identification and Pruning—The process
of competitively associating a focus region with a
model and pruning the sets of competing focus regions
and models.

o Active Search—Efficient object search method using
upper bound pruning for determining the best match-
ing focus region.

This section concludes with an algorithmic specification
of the proposed method.

2.1. Extracting and matching focus regions

The histogram of a scene containing multiple objects
will, in general, have little or no similarity to a model
histogram. In such situations, we have to consider parts
of the scene for matching against the models. We refer to
such parts as focus regions. Ideally, the focus regions
should contain a single object. However, this will be
difficult to ensure in the absence of a priori information
regarding the object size, shape, etc. Since the objects
may occur at different sizes and positions in different
images, the focus regions should cover all sizes and
positions. However, since the color distributions of a
few pixels in the scene will not carry any effective
information, regions with very few pixels should not
be considered.
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Fig. 1. The focus region extraction process. Some focus regions extracted with image resizing factor
o = 0.8 are shown.

In the absence of a priori information favoring
any particular shape for the focus regions, a regular
shape such as a circle or square may be used. For
the sake of concreteness, we consider a square shape
and focus regions are extracted using a square window
of size w x w pixels. Different focus regions are ex-
tracted by scanning the input image with the square
window. For scanning the image the window is shifted
by s pixels in one direction at a time. After one
complete scan is over, the input image is scaled by a
factor o, where a < 1. Focus regions are extracted
from this resized image by scanning it with the same
window as earlier. By this process we would be
focusing upon larger regions from the original
image. This will accommodate changes in object size.
This process of resizing by a factor of « and scanning
the input image is continued until the image becomes
smaller than the scanning window. Thus, the focus
regions are extracted by a process of resizing the input
image by a factor o (i.e. image sizes 1,a,0%,..., and
scanning each resized image with a fixed size square
window. Figure 1 shows this process. The hatched
squares represent some of the focus regions in the
images. The window size w and the shift s used for
scanning the images are also shown in the figure. The set
of focus regions may be chaIacterized as follows. Let .#%
denote the image resized by of, and ny denote the pixels
belonging to .#*. Then
x=1,.., %, y=1, o Y

kL k
‘ﬁ - pxy7
where

X Y
p’;y:puv7 u:LJ-Iv V= J1

Let R{; denote a focus region belonging to .#¥. Then the
set R of all focus regions considering all resized images is
given by

R= {R;}, (1)

where

. w w
k=0, ...,mm([loga }], [log, ?])

k k

o' X —w oY —w

i=0.,—) j=0.,—,
s s

k_ k _ . .

R;=py, x=si+1,...,si+wand

y=s5i+1,....5 +w.

The similarity S(R,M) between a focus region R and a
model M is evaluated as the histogram intersection
between their normalized color histograms. The normal-
ized color histogram is obtained by dividing each
histogram count by the total number of pixels. That
is, the sum of all counts in a normalized histogram
will be 1.0. All references to histogram intersection
in this paper shall mean histogram intersection of
normalized histograms. The histogram intersection be-
tween two histograms £ and AF, each with b bins, is
defined as:®

Z min( hR hM

A straightforward computation of this measure, for a
focus region and a model, would be to construct the
normalized histogram of the focus region and then
compute its intersection with the precomputed normal-
ized histogram of the model. This would require initi-
alizing the entire histogram and one scan over the focus
region and at least one scan over the histogram (assuming
that normalized histogram intersection can be computed
by one scan over the non-normalized histogram). The
resulting complexity will be of order of max(w? b), where
b is the number of bins in the histogram. However, since
the focus region has only w” pixels, there will be at most
w? relevant bins in the histogram. The other bins will
definitely have zero values and will not contribute to the
histogram intersection. Based on this observation, we use
the following method for computing the normalized
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histogram intersection of focus region Rfj and a model
M,.

The entire image is first converted to an internal
representation by replacing the color value of each pixel
by the index of the histogram bin to which that pixel is
mapped. That is, each pixel p,, in the image has an
integral value indexing the histogram counts. This opera-
tion takes similar (actually less) effort as histogramming
the whole image and has to be done only once. The
following algorithm computes the histogram intersection
from this representation and the precomputed normalized
histogram of the model without explicitly constructing
the histogram of Rf;

Algorithm Evaluate

K

1. Focus region Rj,

histogram A.
2. Initialize count=0, S(Rf, M,) = 0.
3. For each pixel p!, of Rf do; hy =0 if pf, is not

masked; count= count +1 if pfcy is masked
4. For each pixel pf, of R} do; If

(s, < 1)

Model histogram A", Temporary

then

1
hy =h *S(R*.,M):SR’&.M,, .
Pl o count i ( v’ )+ count

The above algorithm scans the focus region twice. In the
first scan, in step 3, the temporary histogram is initi-
alized. In the subsequent scan in, step 4, the histogram
intersection is evaluated. The complexity is O(w?) and is
independent of the number of histogram bins. Since
complexity is independent of histogram size, the algo-
rithm is also well suited for large histograms such as co-
occurrence histograms.”' &

2.2. Competitive identification and pruning

In the case of a perfect match between a model M and
focus region R the histogram intersection value S(R,M)
will be equal to 1.0. However, a perfect match is very
unlikely. In general, even when R contains exactly the
same object as M, the intersection value would be less
than 1.0. This may be the result of inter-reflections,
changes in background, changes in environmental con-
ditions, etc. Moreover, in situations where R contains
only a part of M, or when R contains pixels not belonging
to M, the intersection value will be less than 1.0. At the
same time very low values of S(R,M) may be caused due
to partial similarity between models and/or background
pixels and other noise. They do not indicate the presence
of the model object. We eliminate all matches with very
low values by applying a low threshold 6. It is clear that
this simple thresholding alone is not sufficient, since all
models with histogram intersection values above the
threshold need not be present in the scene. Several
models may have intersection values above the threshold
@ for the same or overlapping focus regions. It has to be
ensured that the regions associated with different objects
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are disjoint. We adopt a winner takes all policy combined
with the removal of detected objects to resolve such
conflicts.

A higher histogram intersection value denotes a better
match between the region and the model. Let the model-
focus region pair (R',M’') have the highest intersection
value among all the model region pairs, i.e.

S(R',M') = max S(R,M).

MeM, RER.
Then M’ has the maximum evidence for being present in
R and M’ is accepted as the winner. The focus region
having the highest histogram intersection value with a
model is determined using active search. Active search
employs upper bounds on the histogram intersection
value for pruning the search area.!" Consequently, the
best matching focus region is determined by evaluating
the histogram intersection of a small fraction of the focus
regions. The salient aspects of active search are briefly
discussed in Section 2.3.

Once a model M’ and focus region R’ are identified as
the winning pair, we have to prevent other models from
matching against the same pixels as M’. However, the
exact pixels in R’ which contributed to the match between
model M’ and R’ are not known. But a large intersection
value indicates that most of R’ contributed to the match
and the winner has a comparatively large intersection
value. Therefore, we associate all the pixels of R’ to the
model M’, and the pixels belonging to R are masked to
prevent them from being matched against other models.
It may be recalled that any masked pixels are not
considered while evaluating the histogram intersection.
Consequently, the pixels belonging to R’ do not take part
in further matches.

The effect of masking pixels belonging to a focus
region is schematically shown in Fig. 2. The region R
has no pixels in common with the masked region and
hence remains unchanged. On the other hand, regions R,
and R; overlap the masked region and do not constitute
the entire square window. Region R; forms a small

masked
region

Fig. 2. The effect of masking pixels of a focus region on other
focus regions in the image.
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Fig. 3. Two intersecting focus regions A and B in an image.

narrow region of the input scene and its color distribution
will not, in general, constitute a good feature. This effect
is not restricted to a given image size but will prevail
across all resized images. Also, several focus regions
belonging to other resized images may also get modified
as a result of masking a region. Some of them may end up
having only a few unmasked pixels. Such regions also do
not provide a good feature for matching. Hence all focus
regions with a fraction of unmasked pixels less than some
constant 3 < 1 are not considered in later match and
prune steps. The pruned set of competing regions R.,
becomes Fig. 3:

Rl =R.— {Rfj such that fraction of unmasked
pixels in R, > f}. %))

It may be noted that since at least the region R’ is removed

from the set of competing focus regions, the set of

competing focus regions strictly decreases after every
match and prune step.

The set of models competing for a match are pruned
based on the following observations. Consider a model
M, which is not the current winner. The histogram
intersection of this model with any focus region can
increase only due to masking. From equation (2) it
follows that the maximum fraction of pixels in a compet-
ing focus region which may be masked is (1 — f).
Consider a focus region R’kj having histogram intersection
S(R%.M,). The maximum increase in S(R* M,) due to
masking will be when the masked pixels do not con-
tribute to the histogram intersection. That is, when the
total number of pixels which contribute to the histogram
intersection remain the same as a result of masking.
Using the upper bound derived in Section 2.3 we obtain
that the maximum histogram intersection value of model
M,, in later steps will be bounded by

! S(R:, M,
_gkI?RX (,ﬂ )

Any model for which the above value is less than the
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threshold # will not become the winner in a later step.
Therefore, the set of competing models are pruned as
follows:

M/C =M, — {M; € M, and max S(R@,M;) < (36}.

k
leeR(

3

In each match and prune step one region is associated
with a model and the set of focused regions as well as the
set of competing models are pruned. If the pruned set of
focus regions R, and the pruned set of competing models
M are not empty then the match and prune process
continues with the regions in R}, and the models in M.
By this process, eventually the set of competing focus
regions and/or the set of competing models will become
empty. Then, the iterative process of matching and
pruning terminates with a set of regions associated with
those models which had emerged as winners in some
match and prune step.

2.3. Active search

In this section we give a brief discussion of active
search. For the sake of brevity we present the discussions
considering a single model. It is clear that neighboring
focus regions in an image will have similar color histo-
grams. Active search exploits this fact for concentrating
its efforts only on focus regions having high histogram
intersection with the model. The search space is pruned
using upper bounds on the histogram intersection mea-
sure. By this the computational effort is greatly reduced
while still retaining the optimality. The upper bound for
histogram intersection is derived as follows.

Result. For any two focus regions A and B such that
|A| > |B| and any model M,
min{|A N B}, S(A,M)|A]) + |B — A|

|B| ’

S(B,M) <

where |A|, |B|, JA N B| and |B — A|, respectively, denote
the number of pixels in A, pixels in B, pixels common to
A and B and pixels in B but not in A.

Proof. Let MM A and K8 denote the normalized histo-
grams of the model and the regions A and B. Let H* and
H? denote the unnormalized histograms of A and B. Then

mehM HBY = w
o B

Now, H? = (ANB), + (B —A),, where (ANB); and
(B — A); denote the number of pixels mapping to histo-
gram cell i from the regions AN B and B — A, respec-
tively. We may write

= Z(|B|hi‘w» (ANB)) + (B —A),)
<2 UBIAY, (A0 B)) + (B - A),
< Z |A|RM,

|B|S(B, M)

(ANB),)+|B— Al
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Now
(AR, (AN B),)

>o.(lalR!, (AN B),)
fore we obtain,

<37 (lAlAY, A = |AIS(A, M) and
<> .(ANB),=|ANB|. There-
min(S(A, M)|A|, |ANB|) + |B — Al
|B| '

S(B,M) <

Based on the above result we can compute an upper
bound S(B,M) of S(B,M) as
~ min(|A N B|,S(A,M)|A|) + |B — A|

S(B, M) 5]

In general the focus regions A and B may belong to
different image sizes. Then we use the projection of the
focus regions on the original image for estimating the
upper bound. Let A’ and B’ denote the projection of A and
B, respectively, on the original image. Ignoring the
sampling effects we obtain

min(|A' N B'|, S(A, M)|A']) + |B' — A']

4
5] C)]

S(B,M) <

After the histogram intersection of a focus region against
the model is evaluated, the upper bounds on the histo-
gram intersection of neighboring focus regions are esti-
mated using equation (4). Since a given focus region falls
in the neighborhood of many other regions, several upper
bound estimates will be obtained for a focus region. The
histogram intersection of a focus region is actually
evaluated only if the least among these upper bound
estimates is higher than the threshold § and the current
best match. The active search algorithm for determining
the focus region having the highest histogram intersec-
tion with a model M is given below.

Algorithm Active Search

1. Set ¢'=0, and lub(R};, M) = 1.0 for all R}, € R.

2. Get the next focus region RY. If lub(R%, M) < ¢’ then
set S(RE, M) = 0 and go to step 5.

3. Compute S(Rf.‘.,M ) using algorithm Evaluate. Set
0= max(S:S'(Rij,M),H’ .

4. Compute S(RE,, M) for RY, in the neighborhood of

uy?
Ri using equation (4). Set Ilub(Rf, M)=
min (lub(R?,, M), S(R.,, M)).

5. If more focus regions are remaining go to step 2.

image

uv? ij?

focus region with highest histogram intersection
value, if S(R? M) > 6. If S(R?,,M) < 6 no focus

uy? uv?

region has histogram intersection with M higher than
the threshold 6.

6. R, such that S(RY, M) = maxp S(RE, M) is the

Figure 4 shows the center points of the focus regions
for which histogram intersection against the model was
evaluated by algorithm active search. In the example
shown, active search matched only 361 out of more than
6093 focus regions obtained with s=4, w=32 and 10
different image sizes. It may be observed that this is
much less than all 32 x 32 focus regions belonging to a
128 x 128 image. From Fig. 4, it may be observed that
the search concentrates on the region where the object is
actually present. Consequently, the absence of the object
in an image is quickly determined after matching very
few focus regions. This would be advantageous in large
database retrieval tasks where several uninteresting
images can be skipped quickly.

In algorithm active search, when there are several
models, the upper bounds for each model M, have to
be maintained separately. Also, after one focus region is
associated with a model, some pixels in the competing
focus regions may be masked. In such cases the number
of pixels which are masked in the respective projected
regions are to be subtracted from |A’|, |B'}, |A’ N B'| and
|B' — A'| before applying equation (4).

The focused color intersection with active search
method may be specified as follows:

Algorithm Focused Color Intersection

1. Set M. =M and R. =R where R is defined by
equation (1) and M is the set of models.

2. For each model M € M, determine the best matching
focus region R™ using algorithm Active Search.

3. Let S(RM,M) = maxyem, S(RM,M).  Associate
region R with model M.

4. Mask all pixels belonging to focus region RM. Modify
all focus regions accordingly.

5. Evaluate the pruned set of focus regions R, and the
pruned set of models M. following equations (2) and
(3), respectively.

6. If M., or R is empty then terminate.

7. Set M, = M., R. = R/ and go to step 2.

searched locations

Fig. 4. The center points of focus regions matched by active search for determining the best matching focus
region.
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In Section 3 we present the experimental results obtained
using the above algorithm.

3. EXPERIMENTAL RESULTS

Experiments were conducted with a large number of
scenes under various conditions. In this section we
present the results obtained for 30 scenes using 14
models. No special effort was made to segment the
models from the background. However, the smallest
rectangular clipping window which contains the model
object was used to clip the model images. This reduces
the number of background pixels present in the model
image. The set of models used in the experiments is
shown in Fig. 5. Each model was represented by a
normalized intensity (I), hue (H) and saturation (S)
histogram constructed from its RGB image.

The scenes used in the experiments consisted of one to
six model objects and other objects. These images were
taken in the natural environment of the laboratory. In
some cases multicolored backgrounds were deliberately
introduced. Three images consisted of laboratory scenes
not containing any of the model objects. The objects in
the scenes were kept at arbitrary orientations and were
occluded by other objects. Each image was scaled to
128 x 128 pixels.

Histograms over the intensity (I), hue (H) and satura-
tion (S) space were used for matching between models
and focus regions. Other spaces such as RGB or LUV
may also be employed for this purpose. Discussions on
the characteristics of various color spaces may be found
in the literature [see for example reference (17)]. The IHS
space was quantized by coarse divisions along the I-axis.
The S-axis was divided more finely than the I-axis and
the H-axis had more divisions than S-axis. This type of
division was chosen since the most important cue for
color matching is hue and intensity is the least significant
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among the three. Moreover, the small variations in light-
ing conditions and reflected light from other objects in
the scene could lead to changes in the intensity. This
suggests that the intensity axis be coarsely divided.

The parameters «, 3 and § were fixed at the following
values:

«=08, B=04, 0=03.

Changing the value of « in the range of 0.8-0.99 had no
effect on the recognition rate. However, higher « implies
a greater number of resized images with small differ-
ences in scale and consequently a greater number of
focus regions with small differences. This would result in
better quality regions extracted for an object. However,
higher & would also imply more computational effort. On
the other hand, lower o would reduce computation at the
cost of the quality of the regions extracted.

The value of 3 denotes the minimum fraction of
unmasked pixels in a focus region, and thereby deter-
mines the focus region pruning rate. It was observed that
[ in the range of 0.1-0.75 did not affect the recognition
rate. However, higher 3 prunes more focus regions and
therefore a lower number of regions may be extracted for
an object than a lower . As a result, large parts of the
objects may be missed out. On the other hand, lower
values of [ result in less pruning of the set of focus
regions and consequently more computational effort.
Thus, the choice of the parameters o and 8 depends
on the relative importance of computational efficiency
and quality of regions extracted. A lower value of v and a
higher value of 3 may be used for increased computa-
tional efficiency. A higher « and lower 8 may be
employed for better quality of regions extracted. More-
over, with overlapping objects, it may be necessary to
consider focus regions with a lower number of unmasked
pixels. In such situations also a lower value of 3 may be
used. 3 = 0.4 was found to be a satisfactory value.

9

Fig. 5. The set of 14 models used in the experiments.
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scene 1: models none

scene 2 models 1,2,7 scene 3models 7.8, 14

scene 4: models 5,7, 8 scene 5: models 1, 2, 7 scene 6: mode1527 31 05

Fig. 6. Sample results of object extraction. The areas detected for each object are marked along with the
corresponding model numbers.

The value of # thresholds the histogram intersection
value and determines the pruning rate for the set of
competing models. It was observed that small variations
in this threshold did not affect the results. However, large
increases lead to more misses and large decreases lead to
more false alarms. It may be possible to eliminate false
alarms by a verification process. However, recovering
missed objects may be difficult. Hence, lower values of ¢
are preferable. The value of 0.3 was experimentally
found to be satisfactory.

Figure 6 shows some sample results obtained. The
model and focus region histograms had 5, 50 and 40
divisions along the I, H and S axes, respectively. A
window size of w=32 and shift s=4 was used for
extracting the focus regions. In Fig. 6, scene 1 contains
no models and none were detected. It may be pointed out
that, for scenes with no models, upper bound pruning
matched only less than 100 focus regions per image. In
scenes 2-6, shown in Fig. 6, the regions extracted are
indicated along with the corresponding model numbers.
From the results, it may be observed that the method is
stable against changes in the background, orientation,
shape and size. The distribution of histogram intersection
values of models 3, 4, 5 and 6 with scene number 6 is
shown in Fig. 7. The intersection values for each focus
region in the 128 x 128 pixel image of the scene are
shown in the figure. The distribution for models 3 and 5
have a distinct peak denoting the presence of these
models in the input scene. On the other hand, the dis-
tribution for models 4 and 6 do not have any clear peaks
since these models are not present in the image. This
shows that the color histogram intersection between
models and focus regions provides an efficient discrimi-
nant for detecting and locating objects. In Fig. 8, the

three-dimensional I-H-S histograms of model number 5
[marked ()], scene number 6 [marked (b)] and the focus
region of scene number 6 containing model number 5
[marked (c)] are shown. The size of the black boxes are
proportional to the histogram values. From this figure it
may be observed that (a) and (b) are vastly different. For
example, the most prominent peaks in (2), denoted in the
figure by the two larger boxes, are absent in (b). On the
other hand, the histogram (c) of the focus region contain-
ing the object is quite similar to (a). That is, the focus
region’s histogram is quite similar to the model histo-
gram, whereas the entire scene’s histogram vastly differs
from that of a model present in the scene. Consequently,
methods employing whole image histogram matching
fare poorly compared with focused color intersection.'*
19 Thus, with multiple objects in the scene, histogram
intersection per se is not sufficient; focusing on parts of
the scene is a must.

The effect of varying the histogram bin size, scanning
window size and the number of pixels by which the
window is shifted for scanning the input image were
studied. The effect of changing the histogram bin size on
misses and false alarms is tabulated in Table 1. The
consolidated number of times a model present in the
scene was not detected (misses) and a model not present
was detected (false alarms) are tabulated. It is seen that
very coarse divisions lead to false alarms. This arises
because under coarse division of the color space different
colors get mapped to the same bin leading to false
matches. Similarly it is seen that finer divisions, parti-
cularly along the I-axis, lead to more miss errors. This is
expected since with finer divisions even small variations
due to lighting or other interferences will map a pixel to a
different histogram bin. Since the intensity component is



Focused color intersection with efficient searching for object extraction

1795

model 3

model 4

model 5

<
(RS
".'.;';'."::i:‘\\}
4 ...,l....‘:

model 6

Fig. 7. The histogram intersection values of models 3, 4, 5 and 6 with focus regions obtained from scene 6 at
128 x 128 pixels.

(a}

Fig. 8. The 1-H-S histogram for (a) the model numbered 5, (b) the input scene numbered 4 and (c) the focus
region of input scene 4 containing an instance of model number 5.

Table 1. Effect of changing the number of histogram bins

Table 2. Effect of changing the size of the scanning window

Divisions along Misses False Divisions along Window Misses False
alarms size alarms
1 H S H S

5 30 20 0 7 5 40 30 24 x 24 0 5
5 40 30 0 1 5 40 30 32x32 0 1
5 40 30 0 0 5 40 30 40 x 40 0 1
8 40 30 0 0 5 50 40 24 x 24 3 2
10 50 40 8 0 5 50 40 32 x32 0 0
5 50 40 40 x 40 0 0

most influenced by lighting variations and interference
from other objects in the scene, coarse divisions along the
I-axis are recommended. However, from the results we
observe that small changes in the bin size (as seen from
rows 2, 3 and 4 of Table 1) do not affect the results very
much.

In Table 2 we present the effect of varying the
scanning window size. From the table it is observed
that increasing the window size from 32 x 32 to
40 x 40 does not change the results. However, a
reduction in the window size to 24 x 24 leads to in-
creased false alarms and misses. This occurs since a
smaller window size would be focusing on a small
portion of the object. The color distribution of a small
portion of the object may not provide enough infor-

mation for distinguishing it. When the image is
sufficiently reduced in size for a small window to
cover a larger part of the image, the effects of
sampling would affect the results. Thus, larger
window sizes would be suitable. This is advantageous
since larger windows will reduce the number of
focus regions.

In Table 3 we present the effect of changing the
number of pixels by which the window is shifted while
scanning the image. A change from 4 to 16 pixels has a
negligible influence on the results. Only in one instance
was an object missed when the shift was increased to 16
pixels. Since color distributions do not vary much for
small changes in the focus region, larger shifts do not lose
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Table 3. Effect of shifting the window by 4, 8 and 16 pixels for
input image scanning

Divisions along Window Misses False
shift alarms

I H

5 40 30 4 0 1

5 40 30 8 0 1

5 40 30 16 0 1

5 50 40 4 0 0

5 50 40 8 0 0

5 50 40 16 0 0

information for detecting the objects. However, the re-
gion extracted for a model present in the image will
vary with changes in the number of pixels by which
the scanning window is shifted. The extracted regions
will be better with smaller shifts than with larger
shifts.

Thus, if the objective is only to identify the presence of
the object then large window sizes along with large shifts
may be employed. On the other hand, if the extracted
regions are of importance then a smaller window size
with smaller values of shifts and a larger value of « close
to 1.0 combined with a lower value of 5 need to be
employed. This would, however, be computationaily
more expensive than employing larger window sizes
and shifts, lower o and higher g.

4. CONCLUSION

In this paper, we have proposed a focused color
intersection method with efficient searching for identify-
ing and extracting known objects from a complex scene
using only color distributions. An efficient algorithm for
evaluating color histogram intersection between a model
and a focus region in the image has been presented. This
algorithm’s complexity is independent of histogram size.
Hence it can be employed for fast matching with high-
dimensional histograms such as co-occurrence histo-
grams and those obtained from multiband data.

An upper bound pruning strategy called active search
has been proposed for efficiently searching the focus
regions. Active search results in huge reduction in com-
putational effort, ' without sacrificing accuracy. The
search concentrates only on focus regions having high
similarity with the object. Therefore, the absence of an
object is quickly determined after matching only a few
focus regions. This nature is especially useful for skip-
ping over uninteresting images in database retrieval
operations. Investigations are being conducted for adapt-
ing this search strategy to other features and combina-
tions of features.

The experimental results demonstrate that the method
correctly identifies the objects and extracts the regions
occupied by the objects in the scene. The method works
well under complex backgrounds, occlusion, changes in
two-dimensional rotation, shape and scale. It is fairly
stable for small variations in three-dimensional orienta-

V. V. VINOD and H. MURASE

tion. However, large changes in three-dimensional or-
ientation could lead to changes in the color distribution
and adversely affect the results. Matching against multi-
ple three-dimensional views of the models could over-
come this. More robust color matching techniques are
being investigated to accommodate illumination
changes.
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